Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in RN

In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p -Laplacian equations of Schrödinger–Kirchhoff type M ∫ ∫ R 2 N | u ( x ) - u ( y ) | p | x - y | N + p s d x d y ( - Δ ) p s u + V ( x ) | u | p - 2 u = f ( x , u ) + g ( x ) in R N , where ( - Δ ) p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations Jg. 54; H. 3; S. 2785 - 2806
Hauptverfasser: Pucci, Patrizia, Xiang, Mingqi, Zhang, Binlin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2015
Schlagworte:
ISSN:0944-2669, 1432-0835
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p -Laplacian equations of Schrödinger–Kirchhoff type M ∫ ∫ R 2 N | u ( x ) - u ( y ) | p | x - y | N + p s d x d y ( - Δ ) p s u + V ( x ) | u | p - 2 u = f ( x , u ) + g ( x ) in R N , where ( - Δ ) p s is the fractional p -Laplacian operator, with 0 < s < 1 < p < ∞ and p s < N , the nonlinearity f : R N × R → R is a Carathéodory function and satisfies the Ambrosetti–Rabinowitz condition, V : R N → R + is a potential function and g : R N → R is a perturbation term. We first establish Batsch–Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the Ekeland variational principle and the Mountain Pass theorem.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-015-0883-5