Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in RN

In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p -Laplacian equations of Schrödinger–Kirchhoff type M ∫ ∫ R 2 N | u ( x ) - u ( y ) | p | x - y | N + p s d x d y ( - Δ ) p s u + V ( x ) | u | p - 2 u = f ( x , u ) + g ( x ) in R N , where ( - Δ ) p...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations Vol. 54; no. 3; pp. 2785 - 2806
Main Authors: Pucci, Patrizia, Xiang, Mingqi, Zhang, Binlin
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2015
Subjects:
ISSN:0944-2669, 1432-0835
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we investigate the existence of multiple solutions for the nonhomogeneous fractional p -Laplacian equations of Schrödinger–Kirchhoff type M ∫ ∫ R 2 N | u ( x ) - u ( y ) | p | x - y | N + p s d x d y ( - Δ ) p s u + V ( x ) | u | p - 2 u = f ( x , u ) + g ( x ) in R N , where ( - Δ ) p s is the fractional p -Laplacian operator, with 0 < s < 1 < p < ∞ and p s < N , the nonlinearity f : R N × R → R is a Carathéodory function and satisfies the Ambrosetti–Rabinowitz condition, V : R N → R + is a potential function and g : R N → R is a perturbation term. We first establish Batsch–Wang type compact embedding theorem for the fractional Sobolev spaces. Then multiplicity results are obtained by using the Ekeland variational principle and the Mountain Pass theorem.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-015-0883-5