Sparse nonnegative matrix factorization with ℓ(0)-constraints
Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On t...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 80; no. 1; p. 38 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
15.03.2012
|
| ISSN: | 0925-2312 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches.Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches. |
|---|---|
| AbstractList | Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches.Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches. |
| Author | Pernkopf, Franz Peharz, Robert |
| Author_xml | – sequence: 1 givenname: Robert surname: Peharz fullname: Peharz, Robert – sequence: 2 givenname: Franz surname: Pernkopf fullname: Pernkopf, Franz |
| BookMark | eNotjDFOwzAUQD0UibZwA4aMZUj4306ceEKogoJUiYHuleN8Q6rEDrEDiJkbcENOQiWYnt4b3oLNnHfE2AVChoDy6pA5mozvMw6IGagMeD5jc1C8SLlAfsoWIRwAsESu5uz6adBjoOR4cfSsY_tGSa_j2H4kVpvox_bzGL1L3tv4kvx8fa_gMjXehTjq1sVwxk6s7gKd_3PJdne3u_V9un3cPKxvtumAIGKqNeYlVVihLY2QUnGQjZV11Sgwpimqo5O0Ji9rI42AiisQOZGqbVlSIZZs9bcdRv86UYj7vg2Guk478lPYY8VlIREKIX4BiqdPpA |
| ContentType | Journal Article |
| DBID | 7X8 |
| DOI | 10.1016/j.neucom.2011.09.024 |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 7X8 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABBOA ABCQJ ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFPUW AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HZ~ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- ~HD |
| ID | FETCH-LOGICAL-p103t-aa147e8181f7c3669206df6b8d90ccd58206e6fc47bc6c30829034ee9bf77e53 |
| ISSN | 0925-2312 |
| IngestDate | Sat Sep 27 20:31:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-p103t-aa147e8181f7c3669206df6b8d90ccd58206e6fc47bc6c30829034ee9bf77e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1826561053 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1826561053 |
| PublicationCentury | 2000 |
| PublicationDate | 20120315 |
| PublicationDateYYYYMMDD | 2012-03-15 |
| PublicationDate_xml | – month: 03 year: 2012 text: 20120315 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2012 |
| SSID | ssj0017129 |
| Score | 2.4285452 |
| Snippet | Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior.... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 38 |
| Title | Sparse nonnegative matrix factorization with ℓ(0)-constraints |
| URI | https://www.proquest.com/docview/1826561053 |
| Volume | 80 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELbKwoFLaXkISlkFCRAIZZWHE8fHVbWoRattJYKU2yp2HFoQId1Htdoz_4B_2F_CTOywu9oLHLhYkWUlUT57Mh7PfB8hR4wGgiolbD-AhqoM1pwLjZszwaTyMikqntku6_WiJOG_jIrjsJITYEURTSa8fFeooQ_AxtLZN8D9clPogGsAHVqAHdpXAX9Vwl5VnReYwXKjab3vkYd_YrR1TOGljsBWuQ70GLmeMAmQ2xL9RZSN0AxPtd9acXjISgHCxBba90ixkOF84jP7-jsdTGcJ27P-QXH3UOa1pzydjzVg0oZv62rLOmjoBTZ4hAv2UysxLcwTbQw1bcuSjdbhgttWocaYsKNZVHnL0bXUi5TYvZ_9i-tutx93kvik_GujWhieqhvplBWy6rGARw2y2v7RSS5fzo-Y62mWRfO-ddFkldm3_OClH3HlXcSfyEezLbDaGs7P5IMqNslGLblhGQu8BXurCl1rDl1Lo2stoGshutb_x6dT52we020SX3Tib99to4Fhl67jj-w0dSlT4FXB4pF-GHLPCbM8FFHGHSmzAOn3VZhLyoQMJXIPcceHxcdFzpgK_B3SgDdSu8QCRxZsLWMpFRmFgWmqqPCYJ90058yhe-Sw_gZ9MDF4bpQW6mE87OMWFN3swP_yijH7ZH02db6SxmgwVgdkTf4b_RkOmmSFJVHTwPUMHdhLdw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+nonnegative+matrix+factorization+with+%E2%84%93%280%29-constraints&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Peharz%2C+Robert&rft.au=Pernkopf%2C+Franz&rft.date=2012-03-15&rft.issn=0925-2312&rft.volume=80&rft.issue=1&rft.spage=38&rft_id=info:doi/10.1016%2Fj.neucom.2011.09.024&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |