Sparse nonnegative matrix factorization with ℓ(0)-constraints

Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 80; číslo 1; s. 38
Hlavní autoři: Peharz, Robert, Pernkopf, Franz
Médium: Journal Article
Jazyk:angličtina
Vydáno: 15.03.2012
ISSN:0925-2312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches.Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0925-2312
DOI:10.1016/j.neucom.2011.09.024