Sparse nonnegative matrix factorization with ℓ(0)-constraints

Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On t...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 80; no. 1; p. 38
Main Authors: Peharz, Robert, Pernkopf, Franz
Format: Journal Article
Language:English
Published: 15.03.2012
ISSN:0925-2312
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches.Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches.
AbstractList Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches.Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior. Several authors proposed NMF methods which enforce sparseness by constraining or penalizing the [Formula: see text] of the factor matrices. On the other hand, little work has been done using a more natural sparseness measure, the [Formula: see text]. In this paper, we propose a framework for approximate NMF which constrains the [Formula: see text] of the basis matrix, or the coefficient matrix, respectively. For this purpose, techniques for unconstrained NMF can be easily incorporated, such as multiplicative update rules, or the alternating nonnegative least-squares scheme. In experiments we demonstrate the benefits of our methods, which compare to, or outperform existing approaches.
Author Pernkopf, Franz
Peharz, Robert
Author_xml – sequence: 1
  givenname: Robert
  surname: Peharz
  fullname: Peharz, Robert
– sequence: 2
  givenname: Franz
  surname: Pernkopf
  fullname: Pernkopf, Franz
BookMark eNotjDFOwzAUQD0UibZwA4aMZUj4306ceEKogoJUiYHuleN8Q6rEDrEDiJkbcENOQiWYnt4b3oLNnHfE2AVChoDy6pA5mozvMw6IGagMeD5jc1C8SLlAfsoWIRwAsESu5uz6adBjoOR4cfSsY_tGSa_j2H4kVpvox_bzGL1L3tv4kvx8fa_gMjXehTjq1sVwxk6s7gKd_3PJdne3u_V9un3cPKxvtumAIGKqNeYlVVihLY2QUnGQjZV11Sgwpimqo5O0Ji9rI42AiisQOZGqbVlSIZZs9bcdRv86UYj7vg2Guk478lPYY8VlIREKIX4BiqdPpA
ContentType Journal Article
DBID 7X8
DOI 10.1016/j.neucom.2011.09.024
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
7X8
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
~HD
ID FETCH-LOGICAL-p103t-aa147e8181f7c3669206df6b8d90ccd58206e6fc47bc6c30829034ee9bf77e53
ISSN 0925-2312
IngestDate Sat Sep 27 20:31:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p103t-aa147e8181f7c3669206df6b8d90ccd58206e6fc47bc6c30829034ee9bf77e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1826561053
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1826561053
PublicationCentury 2000
PublicationDate 20120315
PublicationDateYYYYMMDD 2012-03-15
PublicationDate_xml – month: 03
  year: 2012
  text: 20120315
  day: 15
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2012
SSID ssj0017129
Score 2.4285452
Snippet Although nonnegative matrix factorization (NMF) favors a sparse and part-based representation of nonnegative data, there is no guarantee for this behavior....
SourceID proquest
SourceType Aggregation Database
StartPage 38
Title Sparse nonnegative matrix factorization with ℓ(0)-constraints
URI https://www.proquest.com/docview/1826561053
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbNpodcmj5SkqYJDrSlJWjxQ7ak41I2tGHZFuqCb4sly2kT4rj7KEvO-Qf5h_0lmbHk7C57SQ-5CCOELfzJ49Fo5vsIeccCIzR8ZdQvlaEsKA3NmUhoIQyTSklomkLhAR8ORZbJ707FcdLICfCqEvO5rB8VaugDsLF09j_gvr8pdMA1gA4twA7tg4D_UcNe1RxXmMFyZmm9L5GHf-60dVzhpY3ANrkO7D1yPWESoKQa_UWUjbAMT63f2nB46EYBwsUWepdIsVDgepIL-_orH18vErYX_ePq4qouW0_5ejnWgEkbEbXVlm3QMIwpeIQr9tMqMa2sE2sMLW3Lmo224YLzbmVmmLBjWVRl17e11KuU2MNvo5Ofg8Eo7Wfph_oPRbUwPFV30ikbZDPksRQdstn72s9O78-PeBBalkU337ZossnsW3_w2o-48S7S5-SZ2xZ4PQvnC_LEVC_Jdiu54TkL_Ar2Vg263hK6nkXXW0HXQ3S9fze3H_1Py5jukPSkn37-Qp0GBq0DP5rSPA8YN-BVBSXXUZLI0E-KMlGikL7WRYz0-yYpNeNKJxq5h6QfMWOkKjk3cfSadGBGZpd4CYwO_ZILphRTshDMyFjnyPAnAhawPXLUvoMRmBg8N8orczWbjHALim52HL15wJh9srVYOm9JZzqemQPyVP-d_p6MD8kGz8Shg-sODU5LPg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+nonnegative+matrix+factorization+with+%E2%84%93%280%29-constraints&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Peharz%2C+Robert&rft.au=Pernkopf%2C+Franz&rft.date=2012-03-15&rft.issn=0925-2312&rft.volume=80&rft.issue=1&rft.spage=38&rft_id=info:doi/10.1016%2Fj.neucom.2011.09.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon