Adaptive Multiresolution Collocation Methods for Initial Boundary Value Problems of Nonlinear PDEs
We have designed a cubic spline wavelet-like decomposition for the Sobolev space H2 0(I) where I is a bounded interval. Based on a special point value vanishing property of the wavelet basis functions, a fast discrete wavelet transform (DWT) is constructed. This DWT will map discrete samples of a fu...
Uloženo v:
| Vydáno v: | SIAM journal on numerical analysis Ročník 33; číslo 3; s. 937 - 970 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.06.1996
|
| Témata: | |
| ISSN: | 0036-1429, 1095-7170 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We have designed a cubic spline wavelet-like decomposition for the Sobolev space H2
0(I) where I is a bounded interval. Based on a special point value vanishing property of the wavelet basis functions, a fast discrete wavelet transform (DWT) is constructed. This DWT will map discrete samples of a function to its wavelet expansion coefficients in at most 7N log N operations. Using this transform, we propose a collocation method for the initial boundary value problem of nonlinear partial differential equations (PDEs). Then, we test the efficiency of the DWT and apply the collocation method to solve linear and nonlinear PDEs. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 0036-1429 1095-7170 |
| DOI: | 10.1137/0733047 |