Adaptive Multiresolution Collocation Methods for Initial Boundary Value Problems of Nonlinear PDEs

We have designed a cubic spline wavelet-like decomposition for the Sobolev space H2 0(I) where I is a bounded interval. Based on a special point value vanishing property of the wavelet basis functions, a fast discrete wavelet transform (DWT) is constructed. This DWT will map discrete samples of a fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis Jg. 33; H. 3; S. 937 - 970
Hauptverfasser: Cai, Wei, Wang, Jianzhong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia, PA Society for Industrial and Applied Mathematics 01.06.1996
Schlagworte:
ISSN:0036-1429, 1095-7170
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have designed a cubic spline wavelet-like decomposition for the Sobolev space H2 0(I) where I is a bounded interval. Based on a special point value vanishing property of the wavelet basis functions, a fast discrete wavelet transform (DWT) is constructed. This DWT will map discrete samples of a function to its wavelet expansion coefficients in at most 7N log N operations. Using this transform, we propose a collocation method for the initial boundary value problem of nonlinear partial differential equations (PDEs). Then, we test the efficiency of the DWT and apply the collocation method to solve linear and nonlinear PDEs.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/0733047