Adaptive Multiresolution Collocation Methods for Initial Boundary Value Problems of Nonlinear PDEs

We have designed a cubic spline wavelet-like decomposition for the Sobolev space H2 0(I) where I is a bounded interval. Based on a special point value vanishing property of the wavelet basis functions, a fast discrete wavelet transform (DWT) is constructed. This DWT will map discrete samples of a fu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on numerical analysis Ročník 33; číslo 3; s. 937 - 970
Hlavní autoři: Cai, Wei, Wang, Jianzhong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Society for Industrial and Applied Mathematics 01.06.1996
Témata:
ISSN:0036-1429, 1095-7170
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We have designed a cubic spline wavelet-like decomposition for the Sobolev space H2 0(I) where I is a bounded interval. Based on a special point value vanishing property of the wavelet basis functions, a fast discrete wavelet transform (DWT) is constructed. This DWT will map discrete samples of a function to its wavelet expansion coefficients in at most 7N log N operations. Using this transform, we propose a collocation method for the initial boundary value problem of nonlinear partial differential equations (PDEs). Then, we test the efficiency of the DWT and apply the collocation method to solve linear and nonlinear PDEs.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0036-1429
1095-7170
DOI:10.1137/0733047