An improvement on decoding of the binary systematic (47, 24, 11) quadratic residue code

An improved algebraic decoding algorithm (ADA) is presented to decode up to five possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main idea of the improved ADA is to find out the new conditions in four-error and five-error cases and the smallest degree of the unkn...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2011 International Conference on Business Management and Electronic Information Ročník 1; s. 836 - 839
Hlavní autoři: Hung-Peng Lee, Hsin-Chiu Chang
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2011
Témata:
ISBN:1612841082, 9781612841083
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An improved algebraic decoding algorithm (ADA) is presented to decode up to five possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main idea of the improved ADA is to find out the new conditions in four-error and five-error cases and the smallest degree of the unknown syndrome polynomial in five-error case. Thus, the computational complexity in the finite field can be reduced. A simulation result shows that the decoding speed of the proposed ADA is faster than other existing ADAs.
ISBN:1612841082
9781612841083
DOI:10.1109/ICBMEI.2011.5917066