An improvement on decoding of the binary systematic (47, 24, 11) quadratic residue code
An improved algebraic decoding algorithm (ADA) is presented to decode up to five possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main idea of the improved ADA is to find out the new conditions in four-error and five-error cases and the smallest degree of the unkn...
Gespeichert in:
| Veröffentlicht in: | 2011 International Conference on Business Management and Electronic Information Jg. 1; S. 836 - 839 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.05.2011
|
| Schlagworte: | |
| ISBN: | 1612841082, 9781612841083 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | An improved algebraic decoding algorithm (ADA) is presented to decode up to five possible errors in a binary systematic (47, 24, 11) quadratic residue (QR) code. The main idea of the improved ADA is to find out the new conditions in four-error and five-error cases and the smallest degree of the unknown syndrome polynomial in five-error case. Thus, the computational complexity in the finite field can be reduced. A simulation result shows that the decoding speed of the proposed ADA is faster than other existing ADAs. |
|---|---|
| ISBN: | 1612841082 9781612841083 |
| DOI: | 10.1109/ICBMEI.2011.5917066 |

