JPEG Artifacts Reduction via Deep Convolutional Sparse Coding
To effectively reduce JPEG compression artifacts, we propose a deep convolutional sparse coding (DCSC) network architecture. We design our DCSC in the framework of classic learned iterative shrinkage-threshold algorithm. To focus on recognizing and separating artifacts only, we sparsely code the fea...
Uloženo v:
| Vydáno v: | Proceedings / IEEE International Conference on Computer Vision s. 2501 - 2510 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.10.2019
|
| Témata: | |
| ISSN: | 2380-7504 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To effectively reduce JPEG compression artifacts, we propose a deep convolutional sparse coding (DCSC) network architecture. We design our DCSC in the framework of classic learned iterative shrinkage-threshold algorithm. To focus on recognizing and separating artifacts only, we sparsely code the feature maps instead of the raw image. The final de-blocked image is directly reconstructed from the coded features. We use dilated convolution to extract multi-scale image features, which allows our single model to simultaneously handle multiple JPEG compression levels. Since our method integrates model-based convolutional sparse coding with a learning-based deep neural network, the entire network structure is compact and more explainable. The resulting lightweight model generates comparable or better de-blocking results when compared with state-of-the-art methods. |
|---|---|
| AbstractList | To effectively reduce JPEG compression artifacts, we propose a deep convolutional sparse coding (DCSC) network architecture. We design our DCSC in the framework of classic learned iterative shrinkage-threshold algorithm. To focus on recognizing and separating artifacts only, we sparsely code the feature maps instead of the raw image. The final de-blocked image is directly reconstructed from the coded features. We use dilated convolution to extract multi-scale image features, which allows our single model to simultaneously handle multiple JPEG compression levels. Since our method integrates model-based convolutional sparse coding with a learning-based deep neural network, the entire network structure is compact and more explainable. The resulting lightweight model generates comparable or better de-blocking results when compared with state-of-the-art methods. |
| Author | Wu, Feng Fu, Xueyang Zha, Zheng-Jun Paisley, John Ding, Xinghao |
| Author_xml | – sequence: 1 givenname: Xueyang surname: Fu fullname: Fu, Xueyang organization: University of Science and Technology of China – sequence: 2 givenname: Zheng-Jun surname: Zha fullname: Zha, Zheng-Jun organization: University of Science and Technology of China – sequence: 3 givenname: Feng surname: Wu fullname: Wu, Feng organization: University of Science and Technology of China – sequence: 4 givenname: Xinghao surname: Ding fullname: Ding, Xinghao organization: Xiamen University – sequence: 5 givenname: John surname: Paisley fullname: Paisley, John organization: Columbia University |
| BookMark | eNotzL1OwzAUQGGDQKItnRlY_AIJ13ZiXw8MVSilqBKIv7W6dWxkFJwoSSvx9oBgOtI3nCk7SW3yjF0IyIUAe7WuqrdcgrA5gCztEZtbg8JIFAWCwmM2kQohMyUUZ2w6DB8AykrUE3Z9_7hc8UU_xkBuHPiTr_dujG3ih0j8xvuOV206tM3-F6nhzx31g__BOqb3c3YaqBn8_L8z9nq7fKnuss3Dal0tNlmU2o5ZcITamVCbnQOrjdMQVLBQagUUnAuEBEQlBe3QeIkQtKqLsjZqR0GRmrHLv2_03m-7Pn5S_7W1AIgg1DcawkpW |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/ICCV.2019.00259 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9781728148038 1728148030 |
| EISSN | 2380-7504 |
| EndPage | 2510 |
| ExternalDocumentID | 9008801 |
| Genre | orig-research |
| GroupedDBID | 29O 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i269t-fca86c7fd7bc0967c60f3f905630afccfa8a0aa5af6c87e280f63d45d73baf3a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 103 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000531438102064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:38:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i269t-fca86c7fd7bc0967c60f3f905630afccfa8a0aa5af6c87e280f63d45d73baf3a3 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9008801 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Proceedings / IEEE International Conference on Computer Vision |
| PublicationTitleAbbrev | ICCV |
| PublicationYear | 2019 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0039286 |
| Score | 2.4968584 |
| Snippet | To effectively reduce JPEG compression artifacts, we propose a deep convolutional sparse coding (DCSC) network architecture. We design our DCSC in the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2501 |
| SubjectTerms | Convolution Convolutional codes Encoding Feature extraction Image coding Task analysis Transform coding |
| Title | JPEG Artifacts Reduction via Deep Convolutional Sparse Coding |
| URI | https://ieeexplore.ieee.org/document/9008801 |
| WOSCitedRecordID | wos000531438102064&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07bwIxDI4o6tCJtlD1rQwdeyVH7pLc0KGi0MeAUF9iQ07OkZAqQHDw-xsfV9qhS7fIgyM5D8exv8-MXTljc4FhBTBDGyUh4IhsCllklLQ29TY8gm3ZbEIPBmY0yoY1dr3FwiBiWXyGNzQsc_n5zK3oq6ydBYdlCKy1o7XaYLW-b93g5o2qqHtikbWfut0PKtwiNsoOEZH-6p1Suo5-43-T7rPWDwaPD7fe5YDVcHrIGtWjkVdHctlkt8_D3gO_CxuAMApL_kJcrGRtvp4Av0ec86BxXe0w-OSv8xDLYhCS3hZ77_feuo9R1RMhmnRUVkTegVFO-1xbF6IP7ZTw0meCaL7AO-fBgABIwStnNHaM8ErmSZpracFLkEesPp1N8Zjx1MkkSSFO89gnQgLE3lOWkhjaUTh_wppkjfF8Q3sxrgxx-rf4jO2RuTd1buesXixWeMF23bqYLBeX5Vp9AUOSlrk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4QNNETKhjf9uDRle522-0ePBgUQZEQRcONtN02ITFAeP1-O8uKHrx4a-YwTaaP6XTm-wbgykidUetXwKZWB7EPOALNVRpIwbTmTvtHsM6bTSTdrhwM0l4JrjdYGGttXnxmb3CY5_KziVniV1k99Q5LIlhri8dxRNdore971zt6KQrynpCm9Xaj8YGlW8hHGSEV6a_uKbnzaFb-N-0e1H5QeKS38S_7ULLjA6gUz0ZSHMp5FW6feg-P5M5vAUQpzMkrsrGivclqpMi9tVPiNa6KPaY-ydvUR7PWC1FvDd6bD_1GKyi6IgSjSKSLwBklhUlclmjj44_ECOqYSykSfSlnjFNSUaW4csLIxEaSOsGymGcJ08oxxQ6hPJ6M7REQblgccxXyLHQxZUqFzmGeEjnaLTXuGKpojeF0TXwxLAxx8rf4EnZa_ZfOsNPuPp_CLpp-XfV2BuXFbGnPYdusFqP57CJfty9LNJoA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Conference+on+Computer+Vision&rft.atitle=JPEG+Artifacts+Reduction+via+Deep+Convolutional+Sparse+Coding&rft.au=Fu%2C+Xueyang&rft.au=Zha%2C+Zheng-Jun&rft.au=Wu%2C+Feng&rft.au=Ding%2C+Xinghao&rft.date=2019-10-01&rft.pub=IEEE&rft.eissn=2380-7504&rft.spage=2501&rft.epage=2510&rft_id=info:doi/10.1109%2FICCV.2019.00259&rft.externalDocID=9008801 |