JPEG Artifacts Reduction via Deep Convolutional Sparse Coding

To effectively reduce JPEG compression artifacts, we propose a deep convolutional sparse coding (DCSC) network architecture. We design our DCSC in the framework of classic learned iterative shrinkage-threshold algorithm. To focus on recognizing and separating artifacts only, we sparsely code the fea...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings / IEEE International Conference on Computer Vision s. 2501 - 2510
Hlavní autoři: Fu, Xueyang, Zha, Zheng-Jun, Wu, Feng, Ding, Xinghao, Paisley, John
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2019
Témata:
ISSN:2380-7504
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To effectively reduce JPEG compression artifacts, we propose a deep convolutional sparse coding (DCSC) network architecture. We design our DCSC in the framework of classic learned iterative shrinkage-threshold algorithm. To focus on recognizing and separating artifacts only, we sparsely code the feature maps instead of the raw image. The final de-blocked image is directly reconstructed from the coded features. We use dilated convolution to extract multi-scale image features, which allows our single model to simultaneously handle multiple JPEG compression levels. Since our method integrates model-based convolutional sparse coding with a learning-based deep neural network, the entire network structure is compact and more explainable. The resulting lightweight model generates comparable or better de-blocking results when compared with state-of-the-art methods.
ISSN:2380-7504
DOI:10.1109/ICCV.2019.00259