State-Based Multi-parameter Probability Estimation for Context-Based Adaptive Binary Arithmetic Coding
In this paper we present a "State-Based Multi-Parameter Probability Estimation" (SBMP) for Context-Based Adaptive Binary Arithmetic Coding (CABAC) which employs a two hypotheses probability estimator based on exponentially weighted moving averages. It uses a logarithmic state representatio...
Gespeichert in:
| Veröffentlicht in: | DCC (Los Alamitos, Calif.) S. 163 - 172 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.03.2020
|
| Schlagworte: | |
| ISSN: | 2375-0359 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper we present a "State-Based Multi-Parameter Probability Estimation" (SBMP) for Context-Based Adaptive Binary Arithmetic Coding (CABAC) which employs a two hypotheses probability estimator based on exponentially weighted moving averages. It uses a logarithmic state representation and a single subsampled transition table with only 32 elements for the probability update. This reduces the memory requirements virtually without affecting the compression efficiency, compared to corresponding approaches that use a linear state representation and a computation-based probability update. The proposed scheme is based on simple operations like table look-ups and additions. Compared to the state-of-the-art probability estimator of the video compression standard H.265/HEVC, the compression efficiency is increased by up to 1 % Bjøntegaard-Delta bit rate (BD rate) when applied to draft 2 of the Versatile Video Coding (VVC) standard. Furthermore, SBMP was recently adopted to working draft 2 of the MPEG-7 part 17 standard for compression of neural networks for multimedia content description and analysis. |
|---|---|
| AbstractList | In this paper we present a "State-Based Multi-Parameter Probability Estimation" (SBMP) for Context-Based Adaptive Binary Arithmetic Coding (CABAC) which employs a two hypotheses probability estimator based on exponentially weighted moving averages. It uses a logarithmic state representation and a single subsampled transition table with only 32 elements for the probability update. This reduces the memory requirements virtually without affecting the compression efficiency, compared to corresponding approaches that use a linear state representation and a computation-based probability update. The proposed scheme is based on simple operations like table look-ups and additions. Compared to the state-of-the-art probability estimator of the video compression standard H.265/HEVC, the compression efficiency is increased by up to 1 % Bjøntegaard-Delta bit rate (BD rate) when applied to draft 2 of the Versatile Video Coding (VVC) standard. Furthermore, SBMP was recently adopted to working draft 2 of the MPEG-7 part 17 standard for compression of neural networks for multimedia content description and analysis. |
| Author | Bartnik, Christian Haase, Paul Matlage, Stefan Marpe, Detlev Schwarz, Heiko Kirchhoffer, Heiner Wiegand, Thomas |
| Author_xml | – sequence: 1 givenname: Paul surname: Haase fullname: Haase, Paul organization: Fraunhofer Heinrich-Hertz-Institute (HHI), Germany – sequence: 2 givenname: Stefan surname: Matlage fullname: Matlage, Stefan organization: Fraunhofer Heinrich-Hertz-Institute (HHI), Germany – sequence: 3 givenname: Heiner surname: Kirchhoffer fullname: Kirchhoffer, Heiner organization: Fraunhofer Heinrich-Hertz-Institute (HHI), Germany – sequence: 4 givenname: Christian surname: Bartnik fullname: Bartnik, Christian organization: Fraunhofer Heinrich-Hertz-Institute (HHI), Germany – sequence: 5 givenname: Heiko surname: Schwarz fullname: Schwarz, Heiko organization: Fraunhofer Heinrich-Hertz-Institute (HHI), Germany – sequence: 6 givenname: Detlev surname: Marpe fullname: Marpe, Detlev organization: Fraunhofer Heinrich-Hertz-Institute (HHI), Germany – sequence: 7 givenname: Thomas surname: Wiegand fullname: Wiegand, Thomas organization: Fraunhofer Heinrich-Hertz-Institute (HHI), Germany |
| BookMark | eNotjstOwzAQRQ0Cibb0C7rJDySMPUkcL9tQHlIRSMC6mtgTMGqTyjGI_j2R6Opuzj06U3HR9R0LsZCQSQnm5rauc425yhQoyABA5WdibnQltapkmRdanouJQl2kgIW5EtNh-BopgFJORPsaKXK6ooFd8vS9iz49UKA9Rw7JS-gbavzOx2OyHqLfU_R9l7R9SOq-i_wbT8elo0P0P5ysfEfhmCyDj5-jw9sRdL77uBaXLe0Gnp92Jt7v1m_1Q7p5vn-sl5vUK8CYajSkDavSSusMM1myrpEIRrYEJAkrRFdgi84WGqG1FvKqMA1SWyIDzsTi3-uZeXsIY3I4bo2EoiwN_gFPqloR |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/DCC47342.2020.00024 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9781728164571 1728164575 |
| EISSN | 2375-0359 |
| EndPage | 172 |
| ExternalDocumentID | 9105669 |
| Genre | orig-research |
| GroupedDBID | -~X 29F 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
| ID | FETCH-LOGICAL-i203t-739a79e26c1cd9eeacacdb13091fa0a1a3833d53f3dc5730fcc04859b3af63e03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591183800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Jul 30 06:13:05 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i203t-739a79e26c1cd9eeacacdb13091fa0a1a3833d53f3dc5730fcc04859b3af63e03 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9105669 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Mar |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-Mar |
| PublicationDecade | 2020 |
| PublicationTitle | DCC (Los Alamitos, Calif.) |
| PublicationTitleAbbrev | DCC |
| PublicationYear | 2020 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0020061 |
| Score | 1.7801837 |
| Snippet | In this paper we present a "State-Based Multi-Parameter Probability Estimation" (SBMP) for Context-Based Adaptive Binary Arithmetic Coding (CABAC) which... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 163 |
| SubjectTerms | Arithmetic Encoding Estimation Memory management Probability Table lookup Transform coding Video coding Video compression |
| Title | State-Based Multi-parameter Probability Estimation for Context-Based Adaptive Binary Arithmetic Coding |
| URI | https://ieeexplore.ieee.org/document/9105669 |
| WOSCitedRecordID | wos000591183800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED21FQNTgRbxLQ-MmCZxEsdjW1oxoKoDSN0qx3ZEh36oTZH499w5oTCwsEVRvmTr_N7F994B3EuhRY40lLs0SXicWVwH49DwIEUyghCInNZb5r_IySSbzdS0AQ8HLYxzzhefuUc69Hv5dm329Kusp6hNfKqa0JQyrbRah-SKsLh2FQoD1XsaDmMpYpJaRVS8FZCk_Vf_FA8f4_b_XnwC3R8dHpseEOYUGm51Bu3vRgysjssOFJ4y8gEikmVeUsvJ0ntJpS70gLwy4_5kIwzoSqvIkKwyb02FmW91Y9_qDS1-bOA1uqy_XZTvSxI54oX0AV14G49eh8-8bqDAF1EgSi6F0lK5KDWhscrhGquNzRG1VFjoQIca01NhE1EIaxIM9cIYDOhE5UIXqXCBOIfWar1yF8ACrRWms3kRWhXbTCuJTDDJVaaFMS6JLqFDwzbfVB4Z83rErv4-fQ3HNC9VLdcNtMrt3t3CkfkoF7vtnZ_YL5-3pUM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmugJFYxve_BodXe7rx4BIRiRcMCEG-m23ciBRxBM_PfOdFf04MXbZrOvtJl-32zn-wbgNhFKZEhDuY2jiIepwXUw9DX3YiQjCIHIaZ1lfj8ZDNLxWA4rcLfVwlhrXfGZvadDt5dvFnpDv8oeJLWJj-UO7FLnrFKttU2vCI1LXyHfkw-P7XaYiJDEVgGVb3kkav_VQcUBSLf2v1cfQuNHiceGW4w5goqdH0PtuxUDKyOzDrkjjbyFmGSYE9VyMvWeUbELPSAr7Lg_WQdDulArMqSrzJlTYe5b3Ng0aknLH2s5lS5rrqbrtxnJHPFC-oAGvHY7o3aPly0U-DTwxJonQqpE2iDWvjbS4iqrtMkQt6SfK0_5ChNUYSKRC6MjDPZcawzpSGZC5bGwnjiB6nwxt6fAPKUkJrRZ7hsZmlTJBLlglMlUCa1tFJxBnYZtsixcMibliJ3_ffoG9nujl_6k_zR4voADmqOisusSquvVxl7Bnv5YT99X126SvwBnDKiM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=DCC+%28Los+Alamitos%2C+Calif.%29&rft.atitle=State-Based+Multi-parameter+Probability+Estimation+for+Context-Based+Adaptive+Binary+Arithmetic+Coding&rft.au=Haase%2C+Paul&rft.au=Matlage%2C+Stefan&rft.au=Kirchhoffer%2C+Heiner&rft.au=Bartnik%2C+Christian&rft.date=2020-03-01&rft.pub=IEEE&rft.eissn=2375-0359&rft.spage=163&rft.epage=172&rft_id=info:doi/10.1109%2FDCC47342.2020.00024&rft.externalDocID=9105669 |