State-Based Multi-parameter Probability Estimation for Context-Based Adaptive Binary Arithmetic Coding
In this paper we present a "State-Based Multi-Parameter Probability Estimation" (SBMP) for Context-Based Adaptive Binary Arithmetic Coding (CABAC) which employs a two hypotheses probability estimator based on exponentially weighted moving averages. It uses a logarithmic state representatio...
Uloženo v:
| Vydáno v: | DCC (Los Alamitos, Calif.) s. 163 - 172 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.03.2020
|
| Témata: | |
| ISSN: | 2375-0359 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we present a "State-Based Multi-Parameter Probability Estimation" (SBMP) for Context-Based Adaptive Binary Arithmetic Coding (CABAC) which employs a two hypotheses probability estimator based on exponentially weighted moving averages. It uses a logarithmic state representation and a single subsampled transition table with only 32 elements for the probability update. This reduces the memory requirements virtually without affecting the compression efficiency, compared to corresponding approaches that use a linear state representation and a computation-based probability update. The proposed scheme is based on simple operations like table look-ups and additions. Compared to the state-of-the-art probability estimator of the video compression standard H.265/HEVC, the compression efficiency is increased by up to 1 % Bjøntegaard-Delta bit rate (BD rate) when applied to draft 2 of the Versatile Video Coding (VVC) standard. Furthermore, SBMP was recently adopted to working draft 2 of the MPEG-7 part 17 standard for compression of neural networks for multimedia content description and analysis. |
|---|---|
| ISSN: | 2375-0359 |
| DOI: | 10.1109/DCC47342.2020.00024 |