FPGA Implementation of Range Migration Algorithm for Synthetic Aperture Radar Using Simulink HDL Coder

The millimeter-wave synthetic aperture radar echo data processing is a vital step in target reconstruction, and this phase is inherently time-consuming, demanding significant computational resources. To expedite the reconstruction process, Field-Programmable Gate Arrays (FPGA) can be employed. Never...

Full description

Saved in:
Bibliographic Details
Published in:Digest - IEEE Antennas and Propagation Society. International Symposium (1995) pp. 713 - 714
Main Authors: Meng, Yang, Yang, Haoyi, Chen, Bocheng, Chen, Guoping, Qing, Anyong
Format: Conference Proceeding
Language:English
Published: IEEE 14.07.2024
Subjects:
ISSN:1947-1491
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The millimeter-wave synthetic aperture radar echo data processing is a vital step in target reconstruction, and this phase is inherently time-consuming, demanding significant computational resources. To expedite the reconstruction process, Field-Programmable Gate Arrays (FPGA) can be employed. Nevertheless, utilizing FPGA for implementation often entails grappling with complex hardware description languages such as Verilog or VHDL, which are difficult and time-consuming to develop. To overcome these challenges, a hardware architecture based on the range migration algorithm (RMA) is proposed in this paper. We utilize the Simulink HDL Coder toolbox to encapsulate the algorithm into an IP Core, subsequently verifying it on the Xilinx XC7Z020. The test results show that operating at a clock frequency of 100MHz, target reconstruction with original data of size 256×151×64 requires approximately 26.74 ms. This represents a notable acceleration, being about 7.2 times faster than CPU processing in Matlab.
ISSN:1947-1491
DOI:10.1109/AP-S/INC-USNC-URSI52054.2024.10686571