FSRT: Facial Scene Representation Transformer for Face Reenactment from Factorized Appearance, Head-Pose, and Facial Expression Features
The task of face reenactment is to transfer the head motion and facial expressions from a driving video to the appearance of a source image, which may be of a different person (cross-reenactment). Most existing methods are CNN-based and estimate optical flow from the source image to the current driv...
Uloženo v:
| Vydáno v: | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) s. 7716 - 7726 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
16.06.2024
|
| Témata: | |
| ISSN: | 1063-6919 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The task of face reenactment is to transfer the head motion and facial expressions from a driving video to the appearance of a source image, which may be of a different person (cross-reenactment). Most existing methods are CNN-based and estimate optical flow from the source image to the current driving frame, which is then inpainted and refined to produce the output animation. We propose a transformer-based encoder for computing a set-latent representation of the source image(s). We then predict the output color of a query pixel using a transformer-based decoder, which is conditioned with keypoints and a facial expression vector extracted from the driving frame. Latent representations of the source person are learned in a self-supervised manner that factorize their appearance, head pose, and facial expressions. Thus, they are perfectly suited for cross-reenactment. In contrast to most related work, our method naturally extends to multiple source images and can thus adapt to person-specific facial dynamics. We also propose data augmentation and regularization schemes that are necessary to prevent overfitting and support generalizability of the learned representations. We evaluated our approach in a randomized user study. The results indicate superior performance compared to the state-of-the-art in terms of motion transfer quality and temporal consistency. 1 1 Code & Video: https://andrerochow.github.io/fsrt |
|---|---|
| AbstractList | The task of face reenactment is to transfer the head motion and facial expressions from a driving video to the appearance of a source image, which may be of a different person (cross-reenactment). Most existing methods are CNN-based and estimate optical flow from the source image to the current driving frame, which is then inpainted and refined to produce the output animation. We propose a transformer-based encoder for computing a set-latent representation of the source image(s). We then predict the output color of a query pixel using a transformer-based decoder, which is conditioned with keypoints and a facial expression vector extracted from the driving frame. Latent representations of the source person are learned in a self-supervised manner that factorize their appearance, head pose, and facial expressions. Thus, they are perfectly suited for cross-reenactment. In contrast to most related work, our method naturally extends to multiple source images and can thus adapt to person-specific facial dynamics. We also propose data augmentation and regularization schemes that are necessary to prevent overfitting and support generalizability of the learned representations. We evaluated our approach in a randomized user study. The results indicate superior performance compared to the state-of-the-art in terms of motion transfer quality and temporal consistency. 1 1 Code & Video: https://andrerochow.github.io/fsrt |
| Author | Schwarz, Max Behnke, Sven Rochow, Andre |
| Author_xml | – sequence: 1 givenname: Andre surname: Rochow fullname: Rochow, Andre email: rochow@ais.uni-bonn.de organization: University of Bonn – sequence: 2 givenname: Max surname: Schwarz fullname: Schwarz, Max email: schwarz@ais.uni-bonn.de organization: University of Bonn – sequence: 3 givenname: Sven surname: Behnke fullname: Behnke, Sven email: behnke@cs.uni-bonn.de organization: University of Bonn |
| BookMark | eNo1kN1Kw0AQhVdRUGvfoBf7AKbuTzab9a6UxgoFS1u9LZPdCUSaTdhEUJ_Ax3aDejGcmeGbc2BuyIVvPRIy42zOOTP3y9ftTgkt5Vwwkc4Z01KfkanRJpeKSSUZy87JNWeZTDLDzRWZ9v0bY0wKzjOTX5PvYr87PNACbA0nurfoke6wC9ijH2CoW08PAXxftaHBQKOM7MigBzs0kaJVaJtxO7Sh_kJHF12HEI8s3tE1gku2bR9b8O4_Z_UxJvSje4EwvMfhllxWcOpx-qcT8lKsDst1snl-fFouNknNdTYkvExzIVHHyrUEk2KaGzDWpsI6UEaI0maa2RJL4SrunFCpy1PplLOl4iAnZPbrWyPisQt1A-HzGD-klFRa_gCWs2az |
| CODEN | IEEPAD |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR52733.2024.00737 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISBN | 9798350353006 |
| EISSN | 1063-6919 |
| EndPage | 7726 |
| ExternalDocumentID | 10655357 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IH 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
| ID | FETCH-LOGICAL-i176t-1b4823e723e873a94e489a9cc42cda5922bc670cbeb2df1dd254d843d5dcb51a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001322555908012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Aug 27 02:00:51 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i176t-1b4823e723e873a94e489a9cc42cda5922bc670cbeb2df1dd254d843d5dcb51a3 |
| PageCount | 11 |
| ParticipantIDs | ieee_primary_10655357 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-June-16 |
| PublicationDateYYYYMMDD | 2024-06-16 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-June-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings (IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Online) |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0003211698 |
| Score | 2.3341343 |
| Snippet | The task of face reenactment is to transfer the head motion and facial expressions from a driving video to the appearance of a source image, which may be of a... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 7716 |
| SubjectTerms | Animation Face recognition Face Reenactment Facial Animation Rendering (computer graphics) Shape Training Transformers Vectors |
| Title | FSRT: Facial Scene Representation Transformer for Face Reenactment from Factorized Appearance, Head-Pose, and Facial Expression Features |
| URI | https://ieeexplore.ieee.org/document/10655357 |
| WOSCitedRecordID | wos001322555908012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcBUHkW85YERQx0ntsNaNeqAqqiUqlvl2BepS4r6EuIX8LM5u2kRAwNDFOdk5STnzvfIfWdC7i268NyUhnGpCoZCIZkGLhnaKkCXX7sylPyPX9RgoCeTNK_B6gELAwCh-Awe_TD8y3dzu_apMtRwmSQiUQ3SUEpuwVr7hIrAUEamuobH8U761B3nQ99fTGAYGIUm2eL3ISrBhmStf3I_Ju0fNB7N93bmhBxAdUpatftIa-VcnpGv7HU4eqaZ8VlwpOMuRoeh0LXGF1V0tHNTYUHx5uf6OVAZG6rNqUebeKpvHfKJb0cuqApeMh5oH8WB5fMlDk3ldnx6H3UpbUW9O7nGhzZ5y3qjbp_VBy2wGVdyxXgR60iAwksrYdIYYp2a1No4ss4kaRQVVqqOLTAMdyV3DqNKp2PhEmeLhBtxTprVvIILQsGWGJ6XXFtjMRYyWsQuiiBxuLPGyqlL0vYrO33f9tKY7hb16g_6NTnyH88XZ3F5Q5qrxRpuyaHdrGbLxV2QgG-kX7OE |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMFUHkW88cCIAcfxI6xVoyJKFZVSdasc25G6pKgPhPgF_GzOblrEwMAQxTlZOcm5s-9z7jsjdG0ghKe60IQKmRMwCkGUo4LAWuUg5Fe2CCn_g47sdtVwmGQVWT1wYZxzIfnM3fpm-JdvJ2bht8rAwwXnjMtNtMVjAD5LutZ6S4UBmBGJqghy9D65aw6ynq8wxgAIRqFMNvt9jEpYRdL6P_XvocYPHw9n65VmH2248gDVqwASV-45O0Rf6Uuv_4BT7ffBQQ7zGO6FVNeKYVTi_ipQdVMMN9_X93GlNiHfHHu-iZf64iGf8HbQAs7gbeMGt8EgSDaZQVOXdqWn9VEl05bYB5QLeGig17TVb7ZJddQCGVMp5oTmsYqYk3ApyXQSu1glOjEmjozVPImi3Ah5b3IA4rag1gKutCpmlluTc6rZEaqVk9IdI-xMAQC9oMpoA2hIKxbbKHLcwtwaSytPUMOP7OhtWU1jtBrU0z_kV2in3X_ujDqP3acztOs_pE_VouIc1ebThbtA2-Z9Pp5NL4M1fAMjHbbL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition.+Online%29&rft.atitle=FSRT%3A+Facial+Scene+Representation+Transformer+for+Face+Reenactment+from+Factorized+Appearance%2C+Head-Pose%2C+and+Facial+Expression+Features&rft.au=Rochow%2C+Andre&rft.au=Schwarz%2C+Max&rft.au=Behnke%2C+Sven&rft.date=2024-06-16&rft.pub=IEEE&rft.eissn=1063-6919&rft.spage=7716&rft.epage=7726&rft_id=info:doi/10.1109%2FCVPR52733.2024.00737&rft.externalDocID=10655357 |