Learned Convolutional Sparse Coding

We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) S. 2191 - 2195
Hauptverfasser: Sreter, Hillel, Giryes, Raja
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2018
Schlagworte:
ISSN:2379-190X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dictionary (CD), and producing an approximate convolutional sparse code (CSC) over the learned dictionary. We trained the model to minimize reconstruction loss via gradient decent with back-propagation and have achieved competitve results to KSVD image denoising and to leading CSC methods in image inpainting requiring only a small fraction of their runtime.
ISSN:2379-190X
DOI:10.1109/ICASSP.2018.8462313