Learned Convolutional Sparse Coding

We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 2191 - 2195
Hlavní autori: Sreter, Hillel, Giryes, Raja
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.04.2018
Predmet:
ISSN:2379-190X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dictionary (CD), and producing an approximate convolutional sparse code (CSC) over the learned dictionary. We trained the model to minimize reconstruction loss via gradient decent with back-propagation and have achieved competitve results to KSVD image denoising and to leading CSC methods in image inpainting requiring only a small fraction of their runtime.
ISSN:2379-190X
DOI:10.1109/ICASSP.2018.8462313