Learned Convolutional Sparse Coding
We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dic...
Uložené v:
| Vydané v: | 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 2191 - 2195 |
|---|---|
| Hlavní autori: | , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.04.2018
|
| Predmet: | |
| ISSN: | 2379-190X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We propose a convolutional recurrent sparse auto-encoder model. The model consists of a sparse encoder, which is a convolutional extension of the learned ISTA (LISTA) method, and a linear convolutional decoder. Our strategy offers a simple strategy for learning a task-driven sparse convolutional dictionary (CD), and producing an approximate convolutional sparse code (CSC) over the learned dictionary. We trained the model to minimize reconstruction loss via gradient decent with back-propagation and have achieved competitve results to KSVD image denoising and to leading CSC methods in image inpainting requiring only a small fraction of their runtime. |
|---|---|
| ISSN: | 2379-190X |
| DOI: | 10.1109/ICASSP.2018.8462313 |