Ant Colony Optimization algorithm for robot path planning

Path planning is an essential task for the navigation and motion control of autonomous robot manipulators. This NP-complete problem is difficult to solve, especially in a dynamic environment where the optimal path needs to be rerouted in real-time when a new obstacle appears. The ACO (Ant Colony Opt...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2010 International Conference On Computer Design and Applications Ročník 3; s. V3-436 - V3-440
Hlavní autoři: Brand, M, Masuda, M, Wehner, N, Xiao-Hua Yu
Médium: Konferenční příspěvek
Jazyk:angličtina
japonština
Vydáno: IEEE 01.06.2010
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Path planning is an essential task for the navigation and motion control of autonomous robot manipulators. This NP-complete problem is difficult to solve, especially in a dynamic environment where the optimal path needs to be rerouted in real-time when a new obstacle appears. The ACO (Ant Colony Optimization) algorithm is an optimization technique based on swarm intelligence. This paper investigates the application of ACO to robot path planning in a dynamic environment. Two different pheromone re-initialization schemes are compared and computer simulation results are presented.
DOI:10.1109/ICCDA.2010.5541300