Ant Colony Optimization algorithm for robot path planning
Path planning is an essential task for the navigation and motion control of autonomous robot manipulators. This NP-complete problem is difficult to solve, especially in a dynamic environment where the optimal path needs to be rerouted in real-time when a new obstacle appears. The ACO (Ant Colony Opt...
Uložené v:
| Vydané v: | 2010 International Conference On Computer Design and Applications Ročník 3; s. V3-436 - V3-440 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English Japanese |
| Vydavateľské údaje: |
IEEE
01.06.2010
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Path planning is an essential task for the navigation and motion control of autonomous robot manipulators. This NP-complete problem is difficult to solve, especially in a dynamic environment where the optimal path needs to be rerouted in real-time when a new obstacle appears. The ACO (Ant Colony Optimization) algorithm is an optimization technique based on swarm intelligence. This paper investigates the application of ACO to robot path planning in a dynamic environment. Two different pheromone re-initialization schemes are compared and computer simulation results are presented. |
|---|---|
| DOI: | 10.1109/ICCDA.2010.5541300 |