Visual tracking via incremental Log-Euclidean Riemannian subspace learning
Recently, a novel Log-Euclidean Riemannian metric is proposed for statistics on symmetric positive definite (SPD) matrices. Under this metric, distances and Riemannian means take a much simpler form than the widely used affine-invariant Riemannian metric. Based on the Log-Euclidean Riemannian metric...
Gespeichert in:
| Veröffentlicht in: | 2008 IEEE Conference on Computer Vision and Pattern Recognition S. 1 - 8 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2008
|
| Schlagworte: | |
| ISBN: | 9781424422425, 1424422426 |
| ISSN: | 1063-6919, 1063-6919 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, a novel Log-Euclidean Riemannian metric is proposed for statistics on symmetric positive definite (SPD) matrices. Under this metric, distances and Riemannian means take a much simpler form than the widely used affine-invariant Riemannian metric. Based on the Log-Euclidean Riemannian metric, we develop a tracking framework in this paper. In the framework, the covariance matrices of image features in the five modes are used to represent object appearance. Since a nonsingular covariance matrix is a SPD matrix lying on a connected Riemannian manifold, the Log-Euclidean Riemannian metric is used for statistics on the covariance matrices of image features. Further, we present an effective online Log-Euclidean Riemannian subspace learning algorithm which models the appearance changes of an object by incrementally learning a low-order Log-Euclidean eigenspace representation through adaptively updating the sample mean and eigenbasis. Tracking is then led by the Bayesian state inference framework in which a particle filter is used for propagating sample distributions over the time. Theoretic analysis and experimental evaluations demonstrate the promise and effectiveness of the proposed framework. |
|---|---|
| AbstractList | Recently, a novel Log-Euclidean Riemannian metric is proposed for statistics on symmetric positive definite (SPD) matrices. Under this metric, distances and Riemannian means take a much simpler form than the widely used affine-invariant Riemannian metric. Based on the Log-Euclidean Riemannian metric, we develop a tracking framework in this paper. In the framework, the covariance matrices of image features in the five modes are used to represent object appearance. Since a nonsingular covariance matrix is a SPD matrix lying on a connected Riemannian manifold, the Log-Euclidean Riemannian metric is used for statistics on the covariance matrices of image features. Further, we present an effective online Log-Euclidean Riemannian subspace learning algorithm which models the appearance changes of an object by incrementally learning a low-order Log-Euclidean eigenspace representation through adaptively updating the sample mean and eigenbasis. Tracking is then led by the Bayesian state inference framework in which a particle filter is used for propagating sample distributions over the time. Theoretic analysis and experimental evaluations demonstrate the promise and effectiveness of the proposed framework. |
| Author | Zhongfei Zhang Mingliang Zhu Jian Cheng Xi Li Xiaoqin Zhang Weiming Hu |
| Author_xml | – sequence: 1 surname: Xi Li fullname: Xi Li organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing – sequence: 2 surname: Weiming Hu fullname: Weiming Hu organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing – sequence: 3 surname: Zhongfei Zhang fullname: Zhongfei Zhang – sequence: 4 surname: Xiaoqin Zhang fullname: Xiaoqin Zhang organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing – sequence: 5 surname: Mingliang Zhu fullname: Mingliang Zhu organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing – sequence: 6 surname: Jian Cheng fullname: Jian Cheng organization: Nat. Lab. of Pattern Recognition, Chinese Acad. of Sci., Beijing |
| BookMark | eNpVkMtOwzAURA0UiVLyAYhNfiDBvrFje4milocigSrotnLsm2JI3CoPJP6eSHQBs5mRjmYWc0lmYR-QkGtGU8aovi02L-sUKFUpF0oKlp-QSEvFOHAOwDM4JXNG8yzJNdNn_xiI2R92QaK-_6CTuMhyls_J08b3o2nioTP204dd_OVN7IPtsMUwTKDc75LlaBvv0IR47bE1Ifgp9mPVH4zFuEHThal6Rc5r0_QYHX1B3lbL1-IhKZ_vH4u7MnkHqodE6Zpa0AKlETqvsVZVVQuF0lkJltKKKaeRM1456kCCME45I2TFETQDzBbk5nfXI-L20PnWdN_b4zPZD-yUVRQ |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CVPR.2008.4587516 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Statistics Computer Science |
| EISBN | 9781424422432 1424422434 |
| EISSN | 1063-6919 |
| EndPage | 8 |
| ExternalDocumentID | 4587516 |
| Genre | orig-research |
| GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
| ID | FETCH-LOGICAL-h209t-89f0c295e7a596fef8bbf58e7dc72c00b18d9e414bd0d2725ad8da57b4e2912e3 |
| IEDL.DBID | RIE |
| ISBN | 9781424422425 1424422426 |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259736801005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6919 |
| IngestDate | Wed Aug 27 02:16:47 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-h209t-89f0c295e7a596fef8bbf58e7dc72c00b18d9e414bd0d2725ad8da57b4e2912e3 |
| PageCount | 8 |
| ParticipantIDs | ieee_primary_4587516 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-June |
| PublicationDateYYYYMMDD | 2008-06-01 |
| PublicationDate_xml | – month: 06 year: 2008 text: 2008-June |
| PublicationDecade | 2000 |
| PublicationTitle | 2008 IEEE Conference on Computer Vision and Pattern Recognition |
| PublicationTitleAbbrev | CVPR |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000453616 ssj0023720 ssj0003211698 |
| Score | 2.0749753 |
| Snippet | Recently, a novel Log-Euclidean Riemannian metric is proposed for statistics on symmetric positive definite (SPD) matrices. Under this metric, distances and... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Cameras Covariance matrix Inference algorithms Kernel Lighting Particle filters Particle tracking Principal component analysis Robustness Statistics |
| Title | Visual tracking via incremental Log-Euclidean Riemannian subspace learning |
| URI | https://ieeexplore.ieee.org/document/4587516 |
| WOSCitedRecordID | wos000259736801005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioGp0IJ4KwMjhthJ_JhREUJVVVVQdUN-nCFSSVEf_H7sxC1CYmGzL4OtU5J7fHf3IXQdwCOmXI5BSoPz3DgsC22w5talxIlM1SX_0yEfjcRsJsctdLPrhQGAuvgMbsOyxvLtwmxCquwuL7x3TVgbtTlnTa_WLp_iXZOMRVcn7DMf2TC5QxRoYGOpkU-WYSaJ3DZ50WCjtrOf4r6I8CdJ5d39dDxpSi7j6b9oWGor9ND93_0P0NFPO18y3hmqQ9SCqoe60f9M4te98qItxcNW1kP7wRltZjn30dO0XG3UPFkvlQkZ9uSrVElZmSbF6B8MF294sDHz0oKqkkkJH4ERyS9X_vfkg3NIIknF2xF6eRg83z_iyMWA32kq11hIlxoqC-CqkMyBE1q7QgC3hlOTppoIKyEnubappZwWygqrCq5zoJJQyI5Rp1pUcIKSLBXeCDqrNPNxuTPCEqCagAQgRlp9ivpBda-fzbiN16i1s7_F52i_KeEIiZEL1FkvN3CJ9syXV87yqn5HvgHMwrUZ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BQYJTWcVODhwxxM5mnxGIpVQVgopb5WUMkUqKuvD92IlbhMSFmz05WB4lmeXNzAM48-BRLm1KUAhN0lRbIjKliSqMjanliaxL_vudotvlr6-itwTni14YRKyLz_DCL2ss34z0zKfKLtPMedc0X4YVz5wVurUWGRXnnCR5cHb8PnGxTS4WmALzfCw19pknJBdUzNu8mLdS8-lPYZ8FAJTG4vKq33tqii7D-b-IWGo7dNP-3w02YOenoS_qLUzVJixhtQXt4IFG4fueONGc5GEu24J1744205y34b5fTmZyGE3HUvsce_RVyqisdJNkdA86ozdyPdPD0qCsoqcSPzwnkltO3A_KhecYBZqKtx14ubl-vrolgY2BvLNYTAkXNtZMZFjITOQWLVfKZhwLowum41hRbgSmNFUmNqxgmTTcyKxQKTJBGSa70KpGFe5BlMTcmUFrpMpdZG41NxSZoigQqRZG7cO2V93gsxm4MQhaO_hbfAprt8-PnUHnrvtwCOtNQYdPkxxBazqe4TGs6i-nqPFJ_b58A3ChuGI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+IEEE+Conference+on+Computer+Vision+and+Pattern+Recognition&rft.atitle=Visual+tracking+via+incremental+Log-Euclidean+Riemannian+subspace+learning&rft.au=Xi+Li&rft.au=Weiming+Hu&rft.au=Zhongfei+Zhang&rft.au=Xiaoqin+Zhang&rft.date=2008-06-01&rft.pub=IEEE&rft.isbn=9781424422425&rft.issn=1063-6919&rft.eissn=1063-6919&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FCVPR.2008.4587516&rft.externalDocID=4587516 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |

