Parallel Implementation of the Ensemble Empirical Mode Decomposition (PEEMD) and Its Application for Earth Science Data Analysis

To efficiently perform multiscale analysis of high-resolution, global, multiple-dimensional data sets, we have deployed the parallel ensemble empirical mode decomposition (PEEMD) package by implementing three-level parallelism into the ensemble Empirical Mode Decomposition (EMD), achieving a paralle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computing in science & engineering S. 1
Hauptverfasser: Shen, Bo-Wen, Cheung, Samson, Wu, Yu-ling, Li, Jui-Lin, Kao, David
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 08.06.2017
Schlagworte:
ISSN:1521-9615
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To efficiently perform multiscale analysis of high-resolution, global, multiple-dimensional data sets, we have deployed the parallel ensemble empirical mode decomposition (PEEMD) package by implementing three-level parallelism into the ensemble Empirical Mode Decomposition (EMD), achieving a parallel speedup of 720x using 200 eight-core processors. In this study, we discuss the implementation of the PEEMD and its application for the analysis of Earth science data, including the solution of Lorenz model, an idealized terrain-induced flow and real case Hurricane Sandy (2012), the latter of which is the second costliest hurricane in the US history.
ISSN:1521-9615
DOI:10.1109/MCSE.2017.2581314