Parallel Implementation of the Ensemble Empirical Mode Decomposition (PEEMD) and Its Application for Earth Science Data Analysis

To efficiently perform multiscale analysis of high-resolution, global, multiple-dimensional data sets, we have deployed the parallel ensemble empirical mode decomposition (PEEMD) package by implementing three-level parallelism into the ensemble Empirical Mode Decomposition (EMD), achieving a paralle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computing in science & engineering s. 1
Hlavní autoři: Shen, Bo-Wen, Cheung, Samson, Wu, Yu-ling, Li, Jui-Lin, Kao, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 08.06.2017
Témata:
ISSN:1521-9615
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To efficiently perform multiscale analysis of high-resolution, global, multiple-dimensional data sets, we have deployed the parallel ensemble empirical mode decomposition (PEEMD) package by implementing three-level parallelism into the ensemble Empirical Mode Decomposition (EMD), achieving a parallel speedup of 720x using 200 eight-core processors. In this study, we discuss the implementation of the PEEMD and its application for the analysis of Earth science data, including the solution of Lorenz model, an idealized terrain-induced flow and real case Hurricane Sandy (2012), the latter of which is the second costliest hurricane in the US history.
ISSN:1521-9615
DOI:10.1109/MCSE.2017.2581314