Parallel Implementation of the Ensemble Empirical Mode Decomposition (PEEMD) and Its Application for Earth Science Data Analysis

To efficiently perform multiscale analysis of high-resolution, global, multiple-dimensional data sets, we have deployed the parallel ensemble empirical mode decomposition (PEEMD) package by implementing three-level parallelism into the ensemble Empirical Mode Decomposition (EMD), achieving a paralle...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computing in science & engineering s. 1
Hlavní autori: Shen, Bo-Wen, Cheung, Samson, Wu, Yu-ling, Li, Jui-Lin, Kao, David
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: IEEE 08.06.2017
Predmet:
ISSN:1521-9615
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:To efficiently perform multiscale analysis of high-resolution, global, multiple-dimensional data sets, we have deployed the parallel ensemble empirical mode decomposition (PEEMD) package by implementing three-level parallelism into the ensemble Empirical Mode Decomposition (EMD), achieving a parallel speedup of 720x using 200 eight-core processors. In this study, we discuss the implementation of the PEEMD and its application for the analysis of Earth science data, including the solution of Lorenz model, an idealized terrain-induced flow and real case Hurricane Sandy (2012), the latter of which is the second costliest hurricane in the US history.
ISSN:1521-9615
DOI:10.1109/MCSE.2017.2581314