Nonparametric function estimation subject to monotonicity, convexity and other shape constraints
This paper uses free-knot and fixed-knot regression splines in a Bayesian context to develop methods for the nonparametric estimation of functions subject to shape constraints in models with log-concave likelihood functions. The shape constraints we consider include monotonicity, convexity and funct...
Uloženo v:
| Vydáno v: | Journal of econometrics Ročník 161; číslo 2; s. 166 - 181 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.04.2011
Elsevier Elsevier Sequoia S.A |
| Edice: | Journal of Econometrics |
| Témata: | |
| ISSN: | 0304-4076, 1872-6895 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper uses free-knot and fixed-knot regression splines in a Bayesian context to develop methods for the nonparametric estimation of functions subject to shape constraints in models with log-concave likelihood functions. The shape constraints we consider include monotonicity, convexity and functions with a single minimum. A computationally efficient MCMC sampling algorithm is developed that converges faster than previous methods for non-Gaussian models. Simulation results indicate the monotonically constrained function estimates have good small sample properties relative to (i) unconstrained function estimates, and (ii) function estimates obtained from other constrained estimation methods when such methods exist. Also, asymptotic results show the methodology provides consistent estimates for a large class of smooth functions. Two detailed illustrations exemplify the ideas. |
|---|---|
| Bibliografie: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| ISSN: | 0304-4076 1872-6895 |
| DOI: | 10.1016/j.jeconom.2010.12.001 |