Nonparametric function estimation subject to monotonicity, convexity and other shape constraints

This paper uses free-knot and fixed-knot regression splines in a Bayesian context to develop methods for the nonparametric estimation of functions subject to shape constraints in models with log-concave likelihood functions. The shape constraints we consider include monotonicity, convexity and funct...

Full description

Saved in:
Bibliographic Details
Published in:Journal of econometrics Vol. 161; no. 2; pp. 166 - 181
Main Authors: Shively, Thomas S., Walker, Stephen G., Damien, Paul
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.04.2011
Elsevier
Elsevier Sequoia S.A
Series:Journal of Econometrics
Subjects:
ISSN:0304-4076, 1872-6895
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper uses free-knot and fixed-knot regression splines in a Bayesian context to develop methods for the nonparametric estimation of functions subject to shape constraints in models with log-concave likelihood functions. The shape constraints we consider include monotonicity, convexity and functions with a single minimum. A computationally efficient MCMC sampling algorithm is developed that converges faster than previous methods for non-Gaussian models. Simulation results indicate the monotonically constrained function estimates have good small sample properties relative to (i) unconstrained function estimates, and (ii) function estimates obtained from other constrained estimation methods when such methods exist. Also, asymptotic results show the methodology provides consistent estimates for a large class of smooth functions. Two detailed illustrations exemplify the ideas.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2010.12.001