MOADE: a multimodal autoencoder for dissociating bulk multi-omics data

In single cell biology, the complexity of tissues may hinder lineage cell mapping or tumor microenvironment decomposition, requiring digital dissociation of bulk tissues. Many deconvolution methods focus on transcriptomic assay, not easily applicable to other omics due to ambiguous cell markers and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Genome Biology Ročník 26; číslo 1; s. 325 - 28
Hlavní autori: Sun, Jiao, Malik, Ayesha A., Lin, Tong, Bratton, Ayla, Pan, Yue, Smith, Kyle, Onar-Thomas, Arzu, Robinson, Giles W., Zhang, Wei, Northcott, Paul A., Li, Qian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 30.09.2025
Springer Nature B.V
BMC
Predmet:
ISSN:1474-760X, 1474-7596, 1474-760X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In single cell biology, the complexity of tissues may hinder lineage cell mapping or tumor microenvironment decomposition, requiring digital dissociation of bulk tissues. Many deconvolution methods focus on transcriptomic assay, not easily applicable to other omics due to ambiguous cell markers and reference-to-target difference. Here, we present MOADE, a multimodal autoencoder pipeline linking multi-dimensional features to jointly predict personalized multi-omic profiles and cellular compositions, using pseudo-bulk data constructed by internal non-transcriptomic reference and external scRNA-seq data. MOADE is evaluated through rigorous simulation experiments and real multi-omic data from multiple tissue types, outperforming nine deconvolution pipelines with superior generalizability and fidelity.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-025-03805-1