MOADE: a multimodal autoencoder for dissociating bulk multi-omics data

In single cell biology, the complexity of tissues may hinder lineage cell mapping or tumor microenvironment decomposition, requiring digital dissociation of bulk tissues. Many deconvolution methods focus on transcriptomic assay, not easily applicable to other omics due to ambiguous cell markers and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology Jg. 26; H. 1; S. 325 - 28
Hauptverfasser: Sun, Jiao, Malik, Ayesha A., Lin, Tong, Bratton, Ayla, Pan, Yue, Smith, Kyle, Onar-Thomas, Arzu, Robinson, Giles W., Zhang, Wei, Northcott, Paul A., Li, Qian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 30.09.2025
Springer Nature B.V
BMC
Schlagworte:
ISSN:1474-760X, 1474-7596, 1474-760X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In single cell biology, the complexity of tissues may hinder lineage cell mapping or tumor microenvironment decomposition, requiring digital dissociation of bulk tissues. Many deconvolution methods focus on transcriptomic assay, not easily applicable to other omics due to ambiguous cell markers and reference-to-target difference. Here, we present MOADE, a multimodal autoencoder pipeline linking multi-dimensional features to jointly predict personalized multi-omic profiles and cellular compositions, using pseudo-bulk data constructed by internal non-transcriptomic reference and external scRNA-seq data. MOADE is evaluated through rigorous simulation experiments and real multi-omic data from multiple tissue types, outperforming nine deconvolution pipelines with superior generalizability and fidelity.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1474-760X
1474-7596
1474-760X
DOI:10.1186/s13059-025-03805-1