Influence of Physical Effects on the Swarming Motility of Pseudomonas aeruginosa
Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and prol...
Uloženo v:
| Vydáno v: | Biophysical journal Ročník 112; číslo 7; s. 1462 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
11.04.2017
|
| Témata: | |
| ISSN: | 1542-0086, 1542-0086 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and proliferation. Using Pseudomonas aeruginosa and its pili-less mutant, ΔPilA, we investigate physical factors that either facilitate or restrict the swarming motility, measured by the rate of increase in area covered by a spreading bacterial colony, i.e., a swarm. The wild-type colony spreads over the agar surface in highly branched structures. The pili-less mutant fills up the area more fully as it spreads, but it also produces numerous and fragmented branches, or tendrils, at the swarm front. Whereas additional surfactants enhance swarming, increasing the agar percentage, adding extra salt or sugar or incorporating viscous agents in the agar matrix all decrease swarming, supporting the conclusion that swarming motility is restricted by the surface tension at the swarm front and swarm growth is limited by the rate of water supply from within the agar gel. The physical basis elaborated through this study provides a useful framework for understanding the swarming behavior of numerous species of bacteria. |
|---|---|
| AbstractList | Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and proliferation. Using Pseudomonas aeruginosa and its pili-less mutant, ΔPilA, we investigate physical factors that either facilitate or restrict the swarming motility, measured by the rate of increase in area covered by a spreading bacterial colony, i.e., a swarm. The wild-type colony spreads over the agar surface in highly branched structures. The pili-less mutant fills up the area more fully as it spreads, but it also produces numerous and fragmented branches, or tendrils, at the swarm front. Whereas additional surfactants enhance swarming, increasing the agar percentage, adding extra salt or sugar or incorporating viscous agents in the agar matrix all decrease swarming, supporting the conclusion that swarming motility is restricted by the surface tension at the swarm front and swarm growth is limited by the rate of water supply from within the agar gel. The physical basis elaborated through this study provides a useful framework for understanding the swarming behavior of numerous species of bacteria.Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and proliferation. Using Pseudomonas aeruginosa and its pili-less mutant, ΔPilA, we investigate physical factors that either facilitate or restrict the swarming motility, measured by the rate of increase in area covered by a spreading bacterial colony, i.e., a swarm. The wild-type colony spreads over the agar surface in highly branched structures. The pili-less mutant fills up the area more fully as it spreads, but it also produces numerous and fragmented branches, or tendrils, at the swarm front. Whereas additional surfactants enhance swarming, increasing the agar percentage, adding extra salt or sugar or incorporating viscous agents in the agar matrix all decrease swarming, supporting the conclusion that swarming motility is restricted by the surface tension at the swarm front and swarm growth is limited by the rate of water supply from within the agar gel. The physical basis elaborated through this study provides a useful framework for understanding the swarming behavior of numerous species of bacteria. Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and proliferation. Using Pseudomonas aeruginosa and its pili-less mutant, ΔPilA, we investigate physical factors that either facilitate or restrict the swarming motility, measured by the rate of increase in area covered by a spreading bacterial colony, i.e., a swarm. The wild-type colony spreads over the agar surface in highly branched structures. The pili-less mutant fills up the area more fully as it spreads, but it also produces numerous and fragmented branches, or tendrils, at the swarm front. Whereas additional surfactants enhance swarming, increasing the agar percentage, adding extra salt or sugar or incorporating viscous agents in the agar matrix all decrease swarming, supporting the conclusion that swarming motility is restricted by the surface tension at the swarm front and swarm growth is limited by the rate of water supply from within the agar gel. The physical basis elaborated through this study provides a useful framework for understanding the swarming behavior of numerous species of bacteria. |
| Author | Yang, Alexander Tang, Wai Shing Si, Tieyan Tang, Jay X |
| Author_xml | – sequence: 1 givenname: Alexander surname: Yang fullname: Yang, Alexander organization: Physics Department, Brown University, Providence, Rhode Island – sequence: 2 givenname: Wai Shing surname: Tang fullname: Tang, Wai Shing organization: Department of Physics, The Chinese University of Hong Kong, Hong Kong, P. R. China – sequence: 3 givenname: Tieyan surname: Si fullname: Si, Tieyan organization: Harbin Institute of Technology, Harbin, P. R. China – sequence: 4 givenname: Jay X surname: Tang fullname: Tang, Jay X email: jay_tang@brown.edu organization: Physics Department, Brown University, Providence, Rhode Island. Electronic address: jay_tang@brown.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28402888$$D View this record in MEDLINE/PubMed |
| BookMark | eNpN0MtKw0AYBeBBKvaiD-BGZukmcS7JXJZSqhYqFtR1mCT_tFOSmZpJkLy9ohVcnbP4OIszRxMfPCB0TUlKCRV3h7Q8HlJGqEwJSwnVZ2hG84wlhCgx-denaB7jgRDKckIv0JSpjDCl1Axt1942A_gKcLB4ux-jq0yDV9ZC1UccPO73gF8_Tdc6v8PPoXeN68cfHGGoQxu8idhAN-ycD9FconNrmghXp1yg94fV2_Ip2bw8rpf3m6TKs7xPpDClACUscGlzZmvQRAKtc6205QQ4VJZqKSrFM1ZzLYziUpSl5loqSxVboNvf3WMXPgaIfdG6WEHTGA9hiAVVSmacZlp805sTHcoW6uLYudZ0Y_H3AvsCNHBhHA |
| CitedBy_id | crossref_primary_10_1080_07391102_2024_2429021 crossref_primary_10_1128_jb_00281_24 crossref_primary_10_3390_microorganisms12040639 crossref_primary_10_1016_j_micpath_2025_107502 crossref_primary_10_3389_fcimb_2023_1245874 crossref_primary_10_1016_j_cbpa_2022_102147 crossref_primary_10_1038_s41567_025_02965_y crossref_primary_10_1103_PhysRevApplied_11_044019 crossref_primary_10_3389_fmicb_2022_1031783 crossref_primary_10_1038_s41598_020_67212_1 crossref_primary_10_1128_spectrum_02078_21 crossref_primary_10_1007_s00284_022_02791_y crossref_primary_10_3390_biom11101468 crossref_primary_10_1098_rsos_240822 crossref_primary_10_1002_cbdv_202500074 crossref_primary_10_1128_JB_00014_18 crossref_primary_10_5582_bst_2018_01130 crossref_primary_10_7554_eLife_42697 crossref_primary_10_2166_wqrj_2023_004 crossref_primary_10_3390_ijms25031393 crossref_primary_10_1007_s00232_017_9985_7 crossref_primary_10_1007_s12223_022_01019_7 crossref_primary_10_1016_j_compbiomed_2021_104673 crossref_primary_10_1016_j_biortech_2025_132255 crossref_primary_10_1590_0001_3765202320220982 crossref_primary_10_1128_JB_00184_19 crossref_primary_10_1021_acs_langmuir_4c03395 crossref_primary_10_1103_PhysRevX_9_021058 crossref_primary_10_1016_j_bpj_2019_06_005 crossref_primary_10_1128_JB_00285_19 crossref_primary_10_3389_fcimb_2020_595709 crossref_primary_10_1093_pnasnexus_pgac025 crossref_primary_10_1128_spectrum_02740_23 crossref_primary_10_1016_j_ijbiomac_2022_03_124 crossref_primary_10_1038_s41598_022_09799_1 crossref_primary_10_1016_j_cossms_2023_101080 crossref_primary_10_1016_j_chemosphere_2022_134921 crossref_primary_10_1111_1462_2920_16373 crossref_primary_10_1016_j_fm_2021_103965 crossref_primary_10_1016_j_cej_2025_161465 crossref_primary_10_1155_2023_2259534 crossref_primary_10_3389_fmicb_2018_02197 crossref_primary_10_1371_journal_pone_0221025 crossref_primary_10_3389_fmicb_2020_00170 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.bpj.2017.02.019 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1542-0086 |
| ExternalDocumentID | 28402888 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -~X .55 0R~ 0SF 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDT AAEDW AAFTH AAKRW AALRI AAMRU AAVLU AAXUO ABJNI ABMAC ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADVLN AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AITUG AKAPO AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CGR CS3 CUY CVF D0L DIK DU5 E3Z EBS ECM EIF EJD F5P FCP FDB FRP HYE IH2 IXB JIG KQ8 L7B M41 N9A NCXOZ NPM O-L O9- OK1 P2P RCE RIG RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW X7M YNY YWH ~02 7X8 ABDGV ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP EFKBS |
| ID | FETCH-LOGICAL-c545t-76ab6e86fe37f52fde907e1d5989f30e3ecf1976c8342d396a8376bb93978f182 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398956000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1542-0086 |
| IngestDate | Sun Sep 28 10:11:20 EDT 2025 Thu Jan 02 23:10:18 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c545t-76ab6e86fe37f52fde907e1d5989f30e3ecf1976c8342d396a8376bb93978f182 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://www.cell.com/article/S0006349517302333/pdf |
| PMID | 28402888 |
| PQID | 1887431496 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1887431496 pubmed_primary_28402888 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-11 |
| PublicationDateYYYYMMDD | 2017-04-11 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biophysical journal |
| PublicationTitleAlternate | Biophys J |
| PublicationYear | 2017 |
| References | 25468980 - Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18013-8 22371567 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4128-33 26296713 - Biomech Model Mechanobiol. 2016 Jun;15(3):643-61 23823220 - Biophys J. 2013 Jul 2;105(1):21-8 25652464 - J R Soc Interface. 2015 Mar 6;12(104):20141290 22947877 - Biophys J. 2012 Aug 8;103(3):601-9 776927 - J Bacteriol. 1976 Jul;127(1):237-48 19081534 - Int Rev Cell Mol Biol. 2008;270:39-85 19617369 - J Bacteriol. 2009 Sep;191(18):5758-64 12659949 - Biochim Biophys Acta. 2003 Apr 1;1611(1-2):91-7 20643957 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13626-30 1444363 - Appl Environ Microbiol. 1992 Oct;58(10):3276-82 10039689 - Phys Rev Lett. 1989 Mar 27;62(13):1496-1499 11709847 - Biomacromolecules. 2000 Spring;1(1):84-90 20483315 - Biophys J. 2010 May 19;98(10):2082-90 12864845 - Mol Microbiol. 2003 Aug;49(3):581-90 4360415 - Ann Surg. 1974 Mar;179(3):352-7 18065549 - J Bacteriol. 2008 Apr;190(8):2700-8 21966078 - Math Models Methods Appl Sci. 2011;21 Suppl 1:939-954 18245294 - J Bacteriol. 2008 Apr;190(8):2671-9 11029417 - J Bacteriol. 2000 Nov;182(21):5990-6 22746331 - Annu Rev Microbiol. 2012;66:493-520 8031099 - Appl Environ Microbiol. 1994 Jun;60(6):2101-6 16237018 - J Bacteriol. 2005 Nov;187(21):7351-61 11053374 - J Bacteriol. 2000 Nov;182(22):6308-21 18785657 - J Basic Microbiol. 2008 Dec;48(6):509-15 17059568 - Mol Microbiol. 2006 Dec;62(5):1264-77 10758151 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4885-90 17803784 - Environ Microbiol. 2007 Oct;9(10):2622-30 21008625 - Experientia. 1945 Dec 15;1:325 12500982 - Annu Rev Biochem. 2003;72:19-54 21166901 - Mol Microbiol. 2011 Jan;79(1):166-79 12194761 - Emerg Infect Dis. 2002 Sep;8(9):881-90 23612298 - Nat Commun. 2013;4:1757 16160828 - Appl Microbiol Biotechnol. 2005 Oct;68(6):718-25 11463434 - Lancet. 2001 Jul 14;358(9276):135-8 11381130 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6901-4 25345421 - Nat Commun. 2014 Oct 27;5:5265 25539737 - BMC Microbiol. 2014 Dec 24;14:322 15629949 - J Bacteriol. 2005 Jan;187(2):771-7 23767750 - Phys Rev Lett. 2013 May 31;110(22):228102 8078935 - Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8631-5 12576578 - Microbiology. 2003 Jan;149(Pt 1):37-46 26511780 - Chembiochem. 2016 Jan 1;17(1):102-11 18682796 - PLoS One. 2008 Aug 06;3(8):e2913 26557106 - Front Microbiol. 2015 Sep 24;6:1017 25866686 - Case Rep Infect Dis. 2015;2015:438517 25866808 - Biomed Res Int. 2015;2015:759348 20233936 - J Bacteriol. 2010 Jun;192(12):2950-64 25140422 - Biophys J. 2014 Aug 19;107(4):871-8 22865844 - J Bacteriol. 2012 Oct;194(19):5388-403 8497197 - Mol Microbiol. 1993 Apr;8(1):53-60 21205908 - Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2246-51 20694026 - Nat Rev Microbiol. 2010 Sep;8(9):634-44 |
| References_xml | – reference: 23767750 - Phys Rev Lett. 2013 May 31;110(22):228102 – reference: 8031099 - Appl Environ Microbiol. 1994 Jun;60(6):2101-6 – reference: 20643957 - Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13626-30 – reference: 26296713 - Biomech Model Mechanobiol. 2016 Jun;15(3):643-61 – reference: 20233936 - J Bacteriol. 2010 Jun;192(12):2950-64 – reference: 22746331 - Annu Rev Microbiol. 2012;66:493-520 – reference: 21205908 - Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2246-51 – reference: 19081534 - Int Rev Cell Mol Biol. 2008;270:39-85 – reference: 25866808 - Biomed Res Int. 2015;2015:759348 – reference: 11463434 - Lancet. 2001 Jul 14;358(9276):135-8 – reference: 25345421 - Nat Commun. 2014 Oct 27;5:5265 – reference: 26557106 - Front Microbiol. 2015 Sep 24;6:1017 – reference: 23612298 - Nat Commun. 2013;4:1757 – reference: 25468980 - Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18013-8 – reference: 20694026 - Nat Rev Microbiol. 2010 Sep;8(9):634-44 – reference: 23823220 - Biophys J. 2013 Jul 2;105(1):21-8 – reference: 18785657 - J Basic Microbiol. 2008 Dec;48(6):509-15 – reference: 15629949 - J Bacteriol. 2005 Jan;187(2):771-7 – reference: 25140422 - Biophys J. 2014 Aug 19;107(4):871-8 – reference: 20483315 - Biophys J. 2010 May 19;98(10):2082-90 – reference: 21966078 - Math Models Methods Appl Sci. 2011;21 Suppl 1:939-954 – reference: 1444363 - Appl Environ Microbiol. 1992 Oct;58(10):3276-82 – reference: 18682796 - PLoS One. 2008 Aug 06;3(8):e2913 – reference: 16160828 - Appl Microbiol Biotechnol. 2005 Oct;68(6):718-25 – reference: 776927 - J Bacteriol. 1976 Jul;127(1):237-48 – reference: 10758151 - Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4885-90 – reference: 21166901 - Mol Microbiol. 2011 Jan;79(1):166-79 – reference: 17803784 - Environ Microbiol. 2007 Oct;9(10):2622-30 – reference: 12659949 - Biochim Biophys Acta. 2003 Apr 1;1611(1-2):91-7 – reference: 21008625 - Experientia. 1945 Dec 15;1:325 – reference: 25539737 - BMC Microbiol. 2014 Dec 24;14:322 – reference: 4360415 - Ann Surg. 1974 Mar;179(3):352-7 – reference: 26511780 - Chembiochem. 2016 Jan 1;17(1):102-11 – reference: 12864845 - Mol Microbiol. 2003 Aug;49(3):581-90 – reference: 12500982 - Annu Rev Biochem. 2003;72:19-54 – reference: 19617369 - J Bacteriol. 2009 Sep;191(18):5758-64 – reference: 12576578 - Microbiology. 2003 Jan;149(Pt 1):37-46 – reference: 8497197 - Mol Microbiol. 1993 Apr;8(1):53-60 – reference: 22371567 - Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4128-33 – reference: 25652464 - J R Soc Interface. 2015 Mar 6;12(104):20141290 – reference: 22947877 - Biophys J. 2012 Aug 8;103(3):601-9 – reference: 8078935 - Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8631-5 – reference: 11709847 - Biomacromolecules. 2000 Spring;1(1):84-90 – reference: 18065549 - J Bacteriol. 2008 Apr;190(8):2700-8 – reference: 11053374 - J Bacteriol. 2000 Nov;182(22):6308-21 – reference: 18245294 - J Bacteriol. 2008 Apr;190(8):2671-9 – reference: 10039689 - Phys Rev Lett. 1989 Mar 27;62(13):1496-1499 – reference: 11029417 - J Bacteriol. 2000 Nov;182(21):5990-6 – reference: 12194761 - Emerg Infect Dis. 2002 Sep;8(9):881-90 – reference: 25866686 - Case Rep Infect Dis. 2015;2015:438517 – reference: 17059568 - Mol Microbiol. 2006 Dec;62(5):1264-77 – reference: 16237018 - J Bacteriol. 2005 Nov;187(21):7351-61 – reference: 11381130 - Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6901-4 – reference: 22865844 - J Bacteriol. 2012 Oct;194(19):5388-403 |
| SSID | ssj0012501 |
| Score | 2.483154 |
| Snippet | Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1462 |
| SubjectTerms | Agar - pharmacology Flagella - drug effects Flagella - metabolism Molecular Weight Movement - drug effects Mutation - genetics Octoxynol - pharmacology Osmolar Concentration Polymers - chemistry Pseudomonas aeruginosa - drug effects Pseudomonas aeruginosa - physiology Surface-Active Agents - pharmacology |
| Title | Influence of Physical Effects on the Swarming Motility of Pseudomonas aeruginosa |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28402888 https://www.proquest.com/docview/1887431496 |
| Volume | 112 |
| WOSCitedRecordID | wos000398956000018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPAaNH2kyUlEXPSwS0GFvZU0j2U9NHW7q-y_d9IHexNBCj21tEwmmW_yTeZD6IZZHuRRYAiVkpFIKUZyEcdES8aF5JG_arGJZDTi47FI2w23qi2r7NbEeqHWTvk98lsKswGCXSTYfflJvGqUZ1dbCY111AsBynivTsYrFgHCe9MvNQqIx-4dq1nXd-Xlh6_sSuqWnfQXhFlHmsHuf_9xD-20GBM_NE6xj9ZMcYC2GtXJ5SFKXzphEuwsTtuBwk0f4wq7AgMoxK_f0pfJTPDQzX397LJ-uDIL7eAzssLSzBaTaeEqeYTeB09vj8-kFVYgCgDTnCRM5sxwZk2Y2Diw2kCKbKiOBRc2vDOhUZYCTlE8jAIdCiYhjWV5LgC8cAsZyTHaKFxhThG2Wvr4JoUN_JFWnccqEExoBUgjokr20XVnqgwc17MRsjBuUWUrY_XRSWPvrGw6bGQQMwH3cH72h7fP0bYfRs_wUHqBehamrblEm-prPq1mV7VHwH2UDn8ADTG_-w |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Physical+Effects+on+the+Swarming+Motility+of+Pseudomonas+aeruginosa&rft.jtitle=Biophysical+journal&rft.au=Yang%2C+Alexander&rft.au=Tang%2C+Wai+Shing&rft.au=Si%2C+Tieyan&rft.au=Tang%2C+Jay+X&rft.date=2017-04-11&rft.eissn=1542-0086&rft.volume=112&rft.issue=7&rft.spage=1462&rft_id=info:doi/10.1016%2Fj.bpj.2017.02.019&rft_id=info%3Apmid%2F28402888&rft_id=info%3Apmid%2F28402888&rft.externalDocID=28402888 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1542-0086&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1542-0086&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1542-0086&client=summon |