Influence of Physical Effects on the Swarming Motility of Pseudomonas aeruginosa

Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and prol...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biophysical journal Ročník 112; číslo 7; s. 1462
Hlavní autoři: Yang, Alexander, Tang, Wai Shing, Si, Tieyan, Tang, Jay X
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 11.04.2017
Témata:
ISSN:1542-0086, 1542-0086
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Many species of bacteria can spread over a moist surface via a particular form of collective motion known as "surface swarming". This form of motility is typically studied by inoculating bacteria on a gel formed by 0.4-1.5% agar, which contains essential nutrients for their growth and proliferation. Using Pseudomonas aeruginosa and its pili-less mutant, ΔPilA, we investigate physical factors that either facilitate or restrict the swarming motility, measured by the rate of increase in area covered by a spreading bacterial colony, i.e., a swarm. The wild-type colony spreads over the agar surface in highly branched structures. The pili-less mutant fills up the area more fully as it spreads, but it also produces numerous and fragmented branches, or tendrils, at the swarm front. Whereas additional surfactants enhance swarming, increasing the agar percentage, adding extra salt or sugar or incorporating viscous agents in the agar matrix all decrease swarming, supporting the conclusion that swarming motility is restricted by the surface tension at the swarm front and swarm growth is limited by the rate of water supply from within the agar gel. The physical basis elaborated through this study provides a useful framework for understanding the swarming behavior of numerous species of bacteria.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1542-0086
1542-0086
DOI:10.1016/j.bpj.2017.02.019