Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias
The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years...
Uložené v:
| Vydané v: | Scientific reports Ročník 14; číslo 1; s. 17444 - 13 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
Nature Publishing Group UK
29.07.2024
Nature Publishing Group Nature Portfolio |
| Predmet: | |
| ISSN: | 2045-2322, 2045-2322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2045-2322 2045-2322 |
| DOI: | 10.1038/s41598-024-68481-w |