Developing a fair and interpretable representation of the clock drawing test for mitigating low education and racial bias

The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 14; no. 1; pp. 17444 - 13
Main Authors: Zhang, Jiaqing, Bandyopadhyay, Sabyasachi, Kimmet, Faith, Wittmayer, Jack, Khezeli, Kia, Libon, David J., Price, Catherine C., Rashidi, Parisa
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 29.07.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The clock drawing test (CDT) is a neuropsychological assessment tool to screen an individual’s cognitive ability. In this study, we developed a Fair and Interpretable Representation of Clock drawing test (FaIRClocks) to evaluate and mitigate classification bias against people with less than 8 years of education, while screening their cognitive function using an array of neuropsychological measures. In this study, we represented clock drawings by a priorly published 10-dimensional deep learning feature set trained on publicly available data from the National Health and Aging Trends Study (NHATS). These embeddings were further fine-tuned with clocks from a preoperative cognitive screening program at the University of Florida to predict three cognitive scores: the Mini-Mental State Examination (MMSE) total score, an attention composite z-score (ATT-C), and a memory composite z-score (MEM-C). ATT-C and MEM-C scores were developed by averaging z-scores based on normative references. The cognitive screening classifiers were initially tested to see their relative performance in patients with low years of education (< = 8 years) versus patients with higher education (> 8 years) and race. Results indicated that the initial unweighted classifiers confounded lower education with cognitive compromise resulting in a 100% type I error rate for this group. Thereby, the samples were re-weighted using multiple fairness metrics to achieve sensitivity/specificity and positive/negative predictive value (PPV/NPV) balance across groups. In summary, we report the FaIRClocks model, with promise to help identify and mitigate bias against people with less than 8 years of education during preoperative cognitive screening.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-68481-w