Optogenetic Tools for Subcellular Applications in Neuroscience

The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous...

Full description

Saved in:
Bibliographic Details
Published in:Neuron (Cambridge, Mass.) Vol. 96; no. 3; p. 572
Main Authors: Rost, Benjamin R, Schneider-Warme, Franziska, Schmitz, Dietmar, Hegemann, Peter
Format: Journal Article
Language:English
Published: United States 01.11.2017
Subjects:
ISSN:1097-4199, 1097-4199
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
AbstractList The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications.
Author Rost, Benjamin R
Hegemann, Peter
Schmitz, Dietmar
Schneider-Warme, Franziska
Author_xml – sequence: 1
  givenname: Benjamin R
  surname: Rost
  fullname: Rost, Benjamin R
  organization: German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
– sequence: 2
  givenname: Franziska
  surname: Schneider-Warme
  fullname: Schneider-Warme, Franziska
  organization: Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Germany; Medical Center - University of Freiburg, Freiburg, Germany
– sequence: 3
  givenname: Dietmar
  surname: Schmitz
  fullname: Schmitz, Dietmar
  organization: German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Foundation Berlin, Berlin, Germany
– sequence: 4
  givenname: Peter
  surname: Hegemann
  fullname: Hegemann, Peter
  email: hegemape@rz.hu-berlin.de
  organization: Experimental Biophysics, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany. Electronic address: hegemape@rz.hu-berlin.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29096074$$D View this record in MEDLINE/PubMed
BookMark eNpNjz1PwzAYhC1URD_gHyCUkSXBr-M48YJUVeVDquhAmSPHfoNcJXaIk4F_TyqKxHQ3nJ67W5KZ8w4JuQWaAAXxcEwcjr13CaOQJ1QmlOcXZAFU5jEHKWf__JwsQzhSCjyTcEXmTFIpaM4X5HHfDf4THQ5WRwfvmxDVvo_ex0pj04yN6qN11zVWq8F6FyLrordTbdAWncZrclmrJuDNWVfk42l72LzEu_3z62a9i3VG2RAbBQZqBWklIGWiqIRElRvJZCqVUEIUrDZgeGZS5IpNyvIC62k-cp5pwVbk_pfb9f5rxDCUrQ2nhcqhH0MJUvCJW3A6Re_O0bFq0ZRdb1vVf5d_n9kPrsNcQA
CitedBy_id crossref_primary_10_3389_fnsyn_2021_734975
crossref_primary_10_1371_journal_pone_0200107
crossref_primary_10_1016_j_jmb_2020_01_010
crossref_primary_10_1016_j_pneurobio_2020_101799
crossref_primary_10_3390_bios11090309
crossref_primary_10_1371_journal_pbio_3001651
crossref_primary_10_3389_fncel_2023_1160245
crossref_primary_10_1016_j_nbd_2021_105475
crossref_primary_10_1038_s41574_018_0105_2
crossref_primary_10_1016_j_ymthe_2023_03_013
crossref_primary_10_3390_app9183673
crossref_primary_10_3389_fimmu_2019_00755
crossref_primary_10_4103_NRR_NRR_D_24_00537
crossref_primary_10_1016_j_brs_2025_09_005
crossref_primary_10_1038_s41467_021_26723_9
crossref_primary_10_1242_dev_199778
crossref_primary_10_7554_eLife_37487
crossref_primary_10_1038_s41589_021_00798_3
crossref_primary_10_1371_journal_pbio_3002591
crossref_primary_10_1038_s41568_022_00527_5
crossref_primary_10_1016_j_bbrc_2020_01_141
crossref_primary_10_1038_s41551_024_01210_w
crossref_primary_10_3389_fnsyn_2019_00024
crossref_primary_10_1038_s43586_022_00136_4
crossref_primary_10_1038_s41467_019_08796_9
crossref_primary_10_1016_j_pbi_2022_102256
crossref_primary_10_1002_advs_202402236
crossref_primary_10_1002_cbic_201800013
crossref_primary_10_1002_cbic_202200321
crossref_primary_10_1088_1741_2552_aadf97
crossref_primary_10_1186_s12915_019_0662_4
crossref_primary_10_1016_j_isci_2024_109776
crossref_primary_10_1038_s42003_022_03636_x
crossref_primary_10_3389_fncir_2020_00041
crossref_primary_10_1007_s00253_021_11307_w
crossref_primary_10_1242_jcs_262163
crossref_primary_10_1038_s41598_025_95355_6
crossref_primary_10_3389_fmolb_2021_771717
crossref_primary_10_3390_ijms23137484
crossref_primary_10_1038_s42004_023_00884_8
crossref_primary_10_1371_journal_pbio_3002221
crossref_primary_10_1088_1478_3975_acf7a1
crossref_primary_10_1093_nar_gkz585
crossref_primary_10_1080_01677063_2019_1708352
crossref_primary_10_1002_advs_202307185
crossref_primary_10_3390_ijms23126593
crossref_primary_10_1073_pnas_1713845115
crossref_primary_10_1002_anie_202115472
crossref_primary_10_1002_chem_201900562
crossref_primary_10_1002_wsbm_1500
crossref_primary_10_3389_fmicb_2018_02692
crossref_primary_10_1134_S2079086424601005
crossref_primary_10_1038_s41583_019_0197_2
crossref_primary_10_1016_j_conb_2025_103106
crossref_primary_10_1113_JP281930
crossref_primary_10_1126_science_aat0094
crossref_primary_10_1007_s12551_022_01003_y
crossref_primary_10_1523_JNEUROSCI_2144_18_2018
crossref_primary_10_3390_ijms21207544
crossref_primary_10_3389_fnins_2022_859803
crossref_primary_10_1002_adma_202419768
crossref_primary_10_1016_j_cub_2024_09_048
crossref_primary_10_1242_dev_191700
crossref_primary_10_1007_s12551_021_00851_4
crossref_primary_10_1007_s10517_021_05135_1
crossref_primary_10_7759_cureus_90023
crossref_primary_10_1002_adma_201908299
crossref_primary_10_1002_advs_202413817
crossref_primary_10_1016_j_neuroscience_2024_11_055
crossref_primary_10_1016_j_pnpbp_2019_01_005
crossref_primary_10_1111_jnc_16243
crossref_primary_10_7554_eLife_63230
crossref_primary_10_1016_j_neuropharm_2023_109651
crossref_primary_10_3389_fneur_2022_982223
crossref_primary_10_1111_bph_15445
crossref_primary_10_1002_ange_201915296
crossref_primary_10_1007_s00424_023_02879_9
crossref_primary_10_1016_j_ymeth_2019_03_011
crossref_primary_10_1146_annurev_physiol_032122_104610
crossref_primary_10_1038_s42003_019_0292_y
crossref_primary_10_3390_app10030805
crossref_primary_10_1016_j_chembiol_2020_07_023
crossref_primary_10_1002_anie_202416456
crossref_primary_10_1016_j_stem_2023_05_015
crossref_primary_10_1109_JSTQE_2022_3214788
crossref_primary_10_1016_j_neures_2020_01_011
crossref_primary_10_1038_s41386_019_0588_0
crossref_primary_10_1007_s12268_023_2033_5
crossref_primary_10_1002_adbi_202000199
crossref_primary_10_1002_jobm_202200249
crossref_primary_10_3389_fchem_2022_879609
crossref_primary_10_1088_1741_2552_abef89
crossref_primary_10_1002_adfm_202303992
crossref_primary_10_1002_anie_201915296
crossref_primary_10_1038_s41467_023_43970_0
crossref_primary_10_3390_ijms22105300
crossref_primary_10_1016_j_conb_2018_03_008
crossref_primary_10_1016_j_jmr_2024_107743
crossref_primary_10_3390_pr11020510
crossref_primary_10_1146_annurev_chembioeng_092120_092340
crossref_primary_10_3389_fncel_2021_778900
crossref_primary_10_1038_d41586_019_01394_1
crossref_primary_10_1210_en_2018_00594
crossref_primary_10_1073_pnas_1900430116
crossref_primary_10_1016_j_jmb_2020_02_019
crossref_primary_10_1016_j_jmb_2019_01_037
crossref_primary_10_1016_j_bbrc_2020_03_105
crossref_primary_10_1016_j_bpj_2019_04_001
crossref_primary_10_1083_jcb_202106179
crossref_primary_10_1002_SMMD_20230026
crossref_primary_10_1111_jnc_15210
crossref_primary_10_1038_s41598_019_42923_2
crossref_primary_10_1002_chem_201903909
crossref_primary_10_1186_s12896_020_00633_y
crossref_primary_10_1038_s41598_018_34472_x
crossref_primary_10_1016_j_plasmid_2021_102597
crossref_primary_10_1016_j_bbrc_2019_12_132
crossref_primary_10_1038_s41592_021_01240_1
crossref_primary_10_1007_s10071_021_01514_3
crossref_primary_10_3389_fcell_2021_716919
crossref_primary_10_1038_s41467_020_20596_0
crossref_primary_10_1002_ange_202115472
crossref_primary_10_1016_j_cub_2020_09_056
crossref_primary_10_1021_acscentsci_3c01351
crossref_primary_10_1038_s41467_018_04428_w
crossref_primary_10_1002_cbic_202200244
crossref_primary_10_1038_s41598_020_62874_3
crossref_primary_10_1038_s41587_019_0198_8
crossref_primary_10_1177_1073858418769644
crossref_primary_10_1016_j_coisb_2021_100396
crossref_primary_10_1016_j_devcel_2019_01_015
crossref_primary_10_1186_s10020_022_00524_2
crossref_primary_10_1134_S0026893320050118
crossref_primary_10_7554_eLife_42367
crossref_primary_10_3390_cells8121534
crossref_primary_10_1016_j_addr_2022_114457
crossref_primary_10_1111_ner_13516
crossref_primary_10_1007_s00424_023_02887_9
crossref_primary_10_1016_j_ceca_2018_08_007
crossref_primary_10_1016_j_ijbiomac_2024_129551
crossref_primary_10_1002_ange_202416456
crossref_primary_10_1007_s11302_021_09799_2
crossref_primary_10_1016_j_bios_2019_112003
crossref_primary_10_1038_s41598_020_59984_3
crossref_primary_10_1016_j_chembiol_2020_08_005
crossref_primary_10_1016_j_conb_2021_02_002
crossref_primary_10_1111_nph_18451
crossref_primary_10_3390_brainsci10100725
crossref_primary_10_5802_crphys_41
crossref_primary_10_3389_fsci_2023_1017235
crossref_primary_10_1016_j_conb_2020_02_007
crossref_primary_10_1007_s11427_022_2122_0
crossref_primary_10_1038_s41592_022_01745_3
crossref_primary_10_1038_s41398_024_03156_8
crossref_primary_10_3390_ijms21186522
crossref_primary_10_3390_ijms26136521
crossref_primary_10_3390_jfb10030032
crossref_primary_10_1080_10409238_2020_1726279
crossref_primary_10_1208_s12248_018_0211_z
crossref_primary_10_1016_j_neuron_2019_10_036
crossref_primary_10_1111_jnc_15236
crossref_primary_10_3390_microorganisms7100409
crossref_primary_10_1016_j_tibtech_2018_06_011
crossref_primary_10_1117_1_NPh_11_3_033405
crossref_primary_10_1038_s44318_024_00221_2
crossref_primary_10_1002_med_22112
crossref_primary_10_3389_fncom_2023_1229715
crossref_primary_10_1042_BST20190246
crossref_primary_10_1016_j_mee_2017_12_007
crossref_primary_10_1038_s41592_023_01852_9
crossref_primary_10_3390_ijms252111365
crossref_primary_10_3390_ijms20205106
crossref_primary_10_1016_j_jneumeth_2020_109004
crossref_primary_10_1113_JP278292
crossref_primary_10_1016_j_neuron_2021_04_026
crossref_primary_10_1107_S2059798321011220
crossref_primary_10_1016_j_neubiorev_2019_08_007
crossref_primary_10_1038_s42003_021_01977_7
crossref_primary_10_1016_j_jviromet_2020_113863
crossref_primary_10_1016_j_ceb_2020_01_007
crossref_primary_10_1038_s41467_023_36960_9
crossref_primary_10_1016_j_sbi_2019_01_017
crossref_primary_10_1016_j_neures_2021_10_004
crossref_primary_10_1242_bio_036749
crossref_primary_10_3389_fcell_2022_931237
crossref_primary_10_1016_j_preteyeres_2022_101153
crossref_primary_10_2147_JPR_S455549
crossref_primary_10_1002_advs_202100424
crossref_primary_10_4103_bc_bc_33_24
crossref_primary_10_1038_s41593_022_01113_6
crossref_primary_10_1038_s43586_022_00168_w
crossref_primary_10_1007_s12031_021_01898_4
ContentType Journal Article
Copyright Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neuron.2017.09.047
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
ExternalDocumentID 29096074
Genre Journal Article
Review
GroupedDBID ---
--K
-DZ
-~X
0R~
0SF
123
1RT
1~5
26-
2WC
3V.
4.4
457
4G.
53G
5RE
62-
6I.
7-5
7RV
7X7
8C1
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAKRW
AAKUH
AALRI
AAMRU
AAVLU
AAXUO
ABJNI
ABMAC
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AEFWE
AENEX
AEXQZ
AFKRA
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
AKAPO
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKNYI
BPHCQ
BVXVI
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HCIFZ
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M0R
M0T
M2M
M2O
M3Z
M41
M7P
N9A
NCXOZ
NPM
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
RIG
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
7X8
AAFWJ
AAYWO
ABDGV
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c502t-da1d1fa13b613268b69ea7d92939a6a6682fd1d45d3e4a245d278ef097e445c62
IEDL.DBID 7X8
ISICitedReferencesCount 252
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414203400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1097-4199
IngestDate Sat Sep 27 19:54:33 EDT 2025
Thu Jan 02 22:22:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords neuroscience
Channelrhodopsin
optogenetics
subcellular targeting
organelles
neurons
trafficking
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c502t-da1d1fa13b613268b69ea7d92939a6a6682fd1d45d3e4a245d278ef097e445c62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://www.cell.com/article/S0896627317309169/pdf
PMID 29096074
PQID 1964268840
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1964268840
pubmed_primary_29096074
PublicationCentury 2000
PublicationDate 2017-Nov-01
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-Nov-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2017
SSID ssj0014591
Score 2.6429079
SecondaryResourceType review_article
Snippet The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic...
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 572
SubjectTerms Animals
Cell Physiological Phenomena - physiology
Humans
Intracellular Space - chemistry
Intracellular Space - genetics
Intracellular Space - metabolism
Neurons - chemistry
Neurons - physiology
Neurosciences - methods
Neurosciences - trends
Optogenetics - methods
Optogenetics - trends
Rhodopsin - analysis
Rhodopsin - genetics
Second Messenger Systems - physiology
Title Optogenetic Tools for Subcellular Applications in Neuroscience
URI https://www.ncbi.nlm.nih.gov/pubmed/29096074
https://www.proquest.com/docview/1964268840
Volume 96
WOSCitedRecordID wos000414203400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7UKnjx0fqoL1YQb8Em2exmL0oRiweNPVToLWz3AYIm1VSh_97ZTUq9CIKX5JQwTCaz37y-AbjgghmXnwiMZDqgCIiDiXUZMZ2IVJlkYo3nmX3gWZaOx2LYJNyqpq1y4RO9o9alcjnyK0ccFbEU45Gb6Xvgtka56mqzQmMVWjFCGdfSxcfLKgJN_MY8V2R11U6xGJ3z_V2eL9IxoIbcM51S_jvI9IfNYPu_Yu7AVgMzSb-2i11YMUUbOv0CQ-y3ObkkvvHTZ9TbsFHvo5x34PppOivRotxgIxmV5WtFENMSdC4uv-8aVkn_R8GbvBQkW_Jhmj14HtyNbu-DZsFCoJJeNAu0DHVoZRhP8FBHqSdMGMk1IqZYSCYZSyOrQ00THRsqI7xHPDUW1WkoTRSL9mGtKAtzCMSoXpJabWyMAAsxhkiFimNm8X1U2R7twvlCXzkasJNaFqb8rPKlxrpwUCs9n9ZMG3kkXITF6dEfnj6GTfct6znBE2hZ_H3NKayrr9lL9XHmLQOv2fDxG28Mwt8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optogenetic+Tools+for+Subcellular+Applications+in+Neuroscience&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Rost%2C+Benjamin+R&rft.au=Schneider-Warme%2C+Franziska&rft.au=Schmitz%2C+Dietmar&rft.au=Hegemann%2C+Peter&rft.date=2017-11-01&rft.eissn=1097-4199&rft.volume=96&rft.issue=3&rft.spage=572&rft_id=info:doi/10.1016%2Fj.neuron.2017.09.047&rft_id=info%3Apmid%2F29096074&rft_id=info%3Apmid%2F29096074&rft.externalDocID=29096074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-4199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-4199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-4199&client=summon