The Bayesian Lasso

The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal pri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 103; no. 482; pp. 681 - 686
Main Authors: Park, Trevor, Casella, George
Format: Journal Article
Language:English
Published: Alexandria, VA Taylor & Francis 01.06.2008
American Statistical Association
Taylor & Francis Ltd
Subjects:
ISSN:0162-1459, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first