The Bayesian Lasso
The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal pri...
Saved in:
| Published in: | Journal of the American Statistical Association Vol. 103; no. 482; pp. 681 - 686 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Alexandria, VA
Taylor & Francis
01.06.2008
American Statistical Association Taylor & Francis Ltd |
| Subjects: | |
| ISSN: | 0162-1459, 1537-274X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!