The Bayesian Lasso

The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal pri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association Vol. 103; no. 482; pp. 681 - 686
Main Authors: Park, Trevor, Casella, George
Format: Journal Article
Language:English
Published: Alexandria, VA Taylor & Francis 01.06.2008
American Statistical Association
Taylor & Francis Ltd
Subjects:
ISSN:0162-1459, 1537-274X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the regression parameters have independent Laplace (i.e., double-exponential) priors. Gibbs sampling from this posterior is possible using an expanded hierarchy with conjugate normal priors for the regression parameters and independent exponential priors on their variances. A connection with the inverse-Gaussian distribution provides tractable full conditional distributions. The Bayesian Lasso provides interval estimates (Bayesian credible intervals) that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. Slight modifications lead to Bayesian versions of other Lasso-related estimation methods, including bridge regression and a robust variant.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
ISSN:0162-1459
1537-274X
DOI:10.1198/016214508000000337