HASTA: A Hierarchical-Grid Clustering Algorithm with Data Field

In this paper, a novel clustering algorithm, HASTA (HierArchical-grid cluStering based on daTA field), is proposed to model the dataset as a data field by assigning all the data objects into qusantized grids. Clustering centers of HASTA are defined to locate where the maximum value of local potentia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of data warehousing and mining Jg. 10; H. 2; S. 39 - 54
Hauptverfasser: Wang, Shuliang, Chen, Yasen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hershey IGI Global 01.04.2014
Schlagworte:
ISSN:1548-3924, 1548-3932
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a novel clustering algorithm, HASTA (HierArchical-grid cluStering based on daTA field), is proposed to model the dataset as a data field by assigning all the data objects into qusantized grids. Clustering centers of HASTA are defined to locate where the maximum value of local potential is. Edges of cluster in HASTA are identified by analyzing the first-order partial derivative of potential value, thus the full size of arbitrary shaped clusters can be detected. The experimented case demonstrates that HASTA performs effectively upon different datasets and can find out clusters of arbitrary shapes in noisy circumstance. Besides those, HASTA does not force users to preset the exact amount of clusters inside dataset. Furthermore, HASTA is insensitive to the order of data input. The time complexity of HASTA achieves O(n). Those advantages will potentially benefit the mining of big data.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1548-3924
1548-3932
DOI:10.4018/ijdwm.2014040103