HASTA: A Hierarchical-Grid Clustering Algorithm with Data Field

In this paper, a novel clustering algorithm, HASTA (HierArchical-grid cluStering based on daTA field), is proposed to model the dataset as a data field by assigning all the data objects into qusantized grids. Clustering centers of HASTA are defined to locate where the maximum value of local potentia...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of data warehousing and mining Ročník 10; číslo 2; s. 39 - 54
Hlavní autori: Wang, Shuliang, Chen, Yasen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hershey IGI Global 01.04.2014
Predmet:
ISSN:1548-3924, 1548-3932
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a novel clustering algorithm, HASTA (HierArchical-grid cluStering based on daTA field), is proposed to model the dataset as a data field by assigning all the data objects into qusantized grids. Clustering centers of HASTA are defined to locate where the maximum value of local potential is. Edges of cluster in HASTA are identified by analyzing the first-order partial derivative of potential value, thus the full size of arbitrary shaped clusters can be detected. The experimented case demonstrates that HASTA performs effectively upon different datasets and can find out clusters of arbitrary shapes in noisy circumstance. Besides those, HASTA does not force users to preset the exact amount of clusters inside dataset. Furthermore, HASTA is insensitive to the order of data input. The time complexity of HASTA achieves O(n). Those advantages will potentially benefit the mining of big data.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1548-3924
1548-3932
DOI:10.4018/ijdwm.2014040103