Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals

Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and validated machine learning models to quantify the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 16; H. 1; S. 2724 - 12
Hauptverfasser: Govindarajan, Sindhuja Tirumalai, Mamourian, Elizabeth, Erus, Guray, Abdulkadir, Ahmed, Melhem, Randa, Doshi, Jimit, Pomponio, Raymond, Tosun, Duygu, Bilgel, Murat, An, Yang, Sotiras, Aristeidis, Marcus, Daniel S., LaMontagne, Pamela, Benzinger, Tammie L. S., Espeland, Mark A., Masters, Colin L., Maruff, Paul, Launer, Lenore J., Fripp, Jurgen, Johnson, Sterling C., Morris, John C., Albert, Marilyn S., Bryan, R. Nick, Resnick, Susan M., Habes, Mohamad, Shou, Haochang, Wolk, David A., Nasrallah, Ilya M., Davatzikos, Christos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 19.03.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!