Machine learning reveals distinct neuroanatomical signatures of cardiovascular and metabolic diseases in cognitively unimpaired individuals

Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and validated machine learning models to quantify the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications Jg. 16; H. 1; S. 2724 - 12
Hauptverfasser: Govindarajan, Sindhuja Tirumalai, Mamourian, Elizabeth, Erus, Guray, Abdulkadir, Ahmed, Melhem, Randa, Doshi, Jimit, Pomponio, Raymond, Tosun, Duygu, Bilgel, Murat, An, Yang, Sotiras, Aristeidis, Marcus, Daniel S., LaMontagne, Pamela, Benzinger, Tammie L. S., Espeland, Mark A., Masters, Colin L., Maruff, Paul, Launer, Lenore J., Fripp, Jurgen, Johnson, Sterling C., Morris, John C., Albert, Marilyn S., Bryan, R. Nick, Resnick, Susan M., Habes, Mohamad, Shou, Haochang, Wolk, David A., Nasrallah, Ilya M., Davatzikos, Christos
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 19.03.2025
Nature Publishing Group
Nature Portfolio
Schlagworte:
ISSN:2041-1723, 2041-1723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comorbid cardiovascular and metabolic risk factors (CVM) differentially impact brain structure and increase dementia risk, but their specific magnetic resonance imaging signatures (MRI) remain poorly characterized. To address this, we developed and validated machine learning models to quantify the distinct spatial patterns of atrophy and white matter hyperintensities related to hypertension, hyperlipidemia, smoking, obesity, and type-2 diabetes mellitus at the patient level. Using harmonized MRI data from 37,096 participants (45–85 years) in a large multinational dataset of 10 cohort studies, we generated five in silico severity markers that: i) outperformed conventional structural MRI markers with a ten-fold increase in effect sizes, ii) captured subtle patterns at sub-clinical CVM stages, iii) were most sensitive in mid-life (45–64 years), iv) were associated with brain beta-amyloid status, and v) showed stronger associations with cognitive performance than diagnostic CVM status. Integrating personalized measurements of CVM-specific brain signatures into phenotypic frameworks could guide early risk detection and stratification in clinical studies. Cardiovascular and metabolic risk factors (CVM) impact brain structure and increase dementia risk. Here, the authors developed and validated machine learning models to measure the neuroanatomical changes in people with cardiovascular and metabolic diseases that are cognitively unimpaired.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-025-57867-7