On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm”
We discuss here the convergence of the iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm,” which is an algorithm proposed by Beck and Teboulle for minimizing the sum of two convex, lower-semicontinuous, and proper functions (defined in a Euclidean or Hilbert space), such that one is d...
Uložené v:
| Vydané v: | Journal of optimization theory and applications Ročník 166; číslo 3; s. 968 - 982 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Springer US
01.09.2015
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0022-3239, 1573-2878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We discuss here the convergence of the iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm,” which is an algorithm proposed by Beck and Teboulle for minimizing the sum of two convex, lower-semicontinuous, and proper functions (defined in a Euclidean or Hilbert space), such that one is differentiable with Lipschitz gradient, and the proximity operator of the second is easy to compute. It builds a sequence of iterates for which the objective is controlled, up to a (nearly optimal) constant, by the inverse of the square of the iteration number. However, the convergence of the iterates themselves is not known. We show here that with a small modification, we can ensure the same upper bound for the decay of the energy, as well as the convergence of the iterates to a minimizer. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1007/s10957-015-0746-4 |