On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm”

We discuss here the convergence of the iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm,” which is an algorithm proposed by Beck and Teboulle for minimizing the sum of two convex, lower-semicontinuous, and proper functions (defined in a Euclidean or Hilbert space), such that one is d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of optimization theory and applications Vol. 166; no. 3; pp. 968 - 982
Main Authors: Chambolle, A., Dossal, Ch
Format: Journal Article
Language:English
Published: New York Springer US 01.09.2015
Springer Nature B.V
Subjects:
ISSN:0022-3239, 1573-2878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We discuss here the convergence of the iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm,” which is an algorithm proposed by Beck and Teboulle for minimizing the sum of two convex, lower-semicontinuous, and proper functions (defined in a Euclidean or Hilbert space), such that one is differentiable with Lipschitz gradient, and the proximity operator of the second is easy to compute. It builds a sequence of iterates for which the objective is controlled, up to a (nearly optimal) constant, by the inverse of the square of the iteration number. However, the convergence of the iterates themselves is not known. We show here that with a small modification, we can ensure the same upper bound for the decay of the energy, as well as the convergence of the iterates to a minimizer.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-015-0746-4