Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine Jg. 30; H. 6; S. 1655 - 1666
Hauptverfasser: Widman, Adam J., Shah, Minita, Frydendahl, Amanda, Halmos, Daniel, Khamnei, Cole C., Øgaard, Nadia, Rajagopalan, Srinivas, Arora, Anushri, Deshpande, Aditya, Hooper, William F., Quentin, Jean, Bass, Jake, Zhang, Mingxuan, Langanay, Theophile, Andersen, Laura, Steinsnyder, Zoe, Liao, Will, Rasmussen, Mads Heilskov, Henriksen, Tenna Vesterman, Jensen, Sarah Østrup, Nors, Jesper, Therkildsen, Christina, Sotelo, Jesus, Brand, Ryan, Schiffman, Joshua S., Shah, Ronak H., Cheng, Alexandre Pellan, Maher, Colleen, Spain, Lavinia, Krause, Kate, Frederick, Dennie T., den Brok, Wendie, Lohrisch, Caroline, Shenkier, Tamara, Simmons, Christine, Villa, Diego, Mungall, Andrew J., Moore, Richard, Zaikova, Elena, Cerda, Viviana, Kong, Esther, Lai, Daniel, Malbari, Murtaza S., Marton, Melissa, Manaa, Dina, Winterkorn, Lara, Gelmon, Karen, Callahan, Margaret K., Boland, Genevieve, Potenski, Catherine, Wolchok, Jedd D., Saxena, Ashish, Turajlic, Samra, Imielinski, Marcin, Berger, Michael F., Aparicio, Sam, Altorki, Nasser K., Postow, Michael A., Robine, Nicolas, Andersen, Claus Lindbjerg, Landau, Dan A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Nature Publishing Group US 01.06.2024
Nature Publishing Group
Schlagworte:
ISSN:1078-8956, 1546-170X, 1546-170X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE SNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE CNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE SNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition. Detection of circulating tumor DNA using MRD-EDGE, a machine-learning-guided single-nucleotide variant and copy-number variant detection platform for signal enrichment, enables monitoring of minimal residual disease and immunotherapy response in settings of low tumor burden.
AbstractList In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole genome sequencing (WGS). We now introduce MRD-EDGE, a machine learning-guided WGS ctDNA single nucleotide variant (SNV) and copy number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300X compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune checkpoint inhibition (ICI).
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE SNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE CNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE SNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition. Detection of circulating tumor DNA using MRD-EDGE, a machine-learning-guided single-nucleotide variant and copy-number variant detection platform for signal enrichment, enables monitoring of minimal residual disease and immunotherapy response in settings of low tumor burden.
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.Detection of circulating tumor DNA using MRD-EDGE, a machine-learning-guided single-nucleotide variant and copy-number variant detection platform for signal enrichment, enables monitoring of minimal residual disease and immunotherapy response in settings of low tumor burden.
In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.
Author Winterkorn, Lara
Gelmon, Karen
Shah, Minita
Turajlic, Samra
Halmos, Daniel
Henriksen, Tenna Vesterman
Therkildsen, Christina
Potenski, Catherine
Postow, Michael A.
Robine, Nicolas
Schiffman, Joshua S.
Lohrisch, Caroline
Deshpande, Aditya
Aparicio, Sam
Frydendahl, Amanda
Imielinski, Marcin
Maher, Colleen
Villa, Diego
Brand, Ryan
Altorki, Nasser K.
den Brok, Wendie
Kong, Esther
Wolchok, Jedd D.
Zhang, Mingxuan
Shenkier, Tamara
Mungall, Andrew J.
Cheng, Alexandre Pellan
Liao, Will
Nors, Jesper
Berger, Michael F.
Steinsnyder, Zoe
Callahan, Margaret K.
Langanay, Theophile
Marton, Melissa
Øgaard, Nadia
Widman, Adam J.
Arora, Anushri
Bass, Jake
Rajagopalan, Srinivas
Malbari, Murtaza S.
Moore, Richard
Saxena, Ashish
Krause, Kate
Jensen, Sarah Østrup
Spain, Lavinia
Landau, Dan A.
Shah, Ronak H.
Andersen, Claus Lindbjerg
Andersen, Laura
Manaa, Dina
Cerda, Viviana
Hooper, William F.
Rasmussen, Mads Heilskov
Simmons, Christine
Frederick, Dennie T.
Boland, Genevieve
Khamnei, Cole C.
Quentin, Jean
Lai, Daniel
Sotelo, Jesus
Zaikova, Elena
Author_xml – sequence: 1
  givenname: Adam J.
  orcidid: 0000-0001-7953-0677
  surname: Widman
  fullname: Widman, Adam J.
  email: widmana@mskcc.org
  organization: New York Genome Center, Memorial Sloan Kettering Cancer Center
– sequence: 2
  givenname: Minita
  surname: Shah
  fullname: Shah, Minita
  organization: New York Genome Center
– sequence: 3
  givenname: Amanda
  orcidid: 0000-0001-9552-5421
  surname: Frydendahl
  fullname: Frydendahl, Amanda
  organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University
– sequence: 4
  givenname: Daniel
  surname: Halmos
  fullname: Halmos, Daniel
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 5
  givenname: Cole C.
  surname: Khamnei
  fullname: Khamnei, Cole C.
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 6
  givenname: Nadia
  surname: Øgaard
  fullname: Øgaard, Nadia
  organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University
– sequence: 7
  givenname: Srinivas
  surname: Rajagopalan
  fullname: Rajagopalan, Srinivas
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 8
  givenname: Anushri
  surname: Arora
  fullname: Arora, Anushri
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 9
  givenname: Aditya
  surname: Deshpande
  fullname: Deshpande, Aditya
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 10
  givenname: William F.
  surname: Hooper
  fullname: Hooper, William F.
  organization: New York Genome Center
– sequence: 11
  givenname: Jean
  surname: Quentin
  fullname: Quentin, Jean
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 12
  givenname: Jake
  orcidid: 0000-0001-8703-8877
  surname: Bass
  fullname: Bass, Jake
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 13
  givenname: Mingxuan
  surname: Zhang
  fullname: Zhang, Mingxuan
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 14
  givenname: Theophile
  surname: Langanay
  fullname: Langanay, Theophile
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 15
  givenname: Laura
  orcidid: 0009-0001-0223-3401
  surname: Andersen
  fullname: Andersen, Laura
  organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University
– sequence: 16
  givenname: Zoe
  surname: Steinsnyder
  fullname: Steinsnyder, Zoe
  organization: New York Genome Center
– sequence: 17
  givenname: Will
  orcidid: 0000-0001-7574-4694
  surname: Liao
  fullname: Liao, Will
  organization: New York Genome Center
– sequence: 18
  givenname: Mads Heilskov
  orcidid: 0000-0001-5723-6303
  surname: Rasmussen
  fullname: Rasmussen, Mads Heilskov
  organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University
– sequence: 19
  givenname: Tenna Vesterman
  surname: Henriksen
  fullname: Henriksen, Tenna Vesterman
  organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University
– sequence: 20
  givenname: Sarah Østrup
  orcidid: 0000-0001-6044-3362
  surname: Jensen
  fullname: Jensen, Sarah Østrup
  organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University
– sequence: 21
  givenname: Jesper
  orcidid: 0000-0002-9104-7263
  surname: Nors
  fullname: Nors, Jesper
  organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University
– sequence: 22
  givenname: Christina
  orcidid: 0000-0002-2833-6986
  surname: Therkildsen
  fullname: Therkildsen, Christina
  organization: Gastro Unit, Copenhagen University Hospital, Amager – Hvidovre Hospital
– sequence: 23
  givenname: Jesus
  surname: Sotelo
  fullname: Sotelo, Jesus
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 24
  givenname: Ryan
  orcidid: 0000-0001-6412-6647
  surname: Brand
  fullname: Brand, Ryan
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 25
  givenname: Joshua S.
  orcidid: 0000-0002-1028-1438
  surname: Schiffman
  fullname: Schiffman, Joshua S.
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 26
  givenname: Ronak H.
  orcidid: 0000-0001-9042-6213
  surname: Shah
  fullname: Shah, Ronak H.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 27
  givenname: Alexandre Pellan
  orcidid: 0000-0002-3667-0992
  surname: Cheng
  fullname: Cheng, Alexandre Pellan
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 28
  givenname: Colleen
  orcidid: 0000-0003-1117-9272
  surname: Maher
  fullname: Maher, Colleen
  organization: Memorial Sloan Kettering Cancer Center, Parker Institute for Cancer Immunotherapy
– sequence: 29
  givenname: Lavinia
  surname: Spain
  fullname: Spain, Lavinia
  organization: Cancer Dynamics Laboratory, The Francis Crick Institute, Renal and Skin Unit, The Royal Marsden NHS Foundation Trust
– sequence: 30
  givenname: Kate
  surname: Krause
  fullname: Krause, Kate
  organization: Mass General Cancer Center, Massachusetts General Hospital
– sequence: 31
  givenname: Dennie T.
  orcidid: 0000-0003-3355-5267
  surname: Frederick
  fullname: Frederick, Dennie T.
  organization: Mass General Cancer Center, Massachusetts General Hospital
– sequence: 32
  givenname: Wendie
  surname: den Brok
  fullname: den Brok, Wendie
  organization: Department of Medical Oncology, BC Cancer Agency
– sequence: 33
  givenname: Caroline
  surname: Lohrisch
  fullname: Lohrisch, Caroline
  organization: Department of Medical Oncology, BC Cancer Agency
– sequence: 34
  givenname: Tamara
  surname: Shenkier
  fullname: Shenkier, Tamara
  organization: Department of Medical Oncology, BC Cancer Agency
– sequence: 35
  givenname: Christine
  surname: Simmons
  fullname: Simmons, Christine
  organization: Department of Medical Oncology, BC Cancer Agency
– sequence: 36
  givenname: Diego
  orcidid: 0000-0002-4625-3009
  surname: Villa
  fullname: Villa, Diego
  organization: Department of Medical Oncology, BC Cancer Agency
– sequence: 37
  givenname: Andrew J.
  orcidid: 0000-0002-0905-2742
  surname: Mungall
  fullname: Mungall, Andrew J.
  organization: Michael Smith Genome Sciences Centre
– sequence: 38
  givenname: Richard
  surname: Moore
  fullname: Moore, Richard
  organization: Michael Smith Genome Sciences Centre
– sequence: 39
  givenname: Elena
  orcidid: 0000-0002-2422-3108
  surname: Zaikova
  fullname: Zaikova, Elena
  organization: Department of Molecular Oncology, BC Cancer Agency
– sequence: 40
  givenname: Viviana
  surname: Cerda
  fullname: Cerda, Viviana
  organization: Department of Molecular Oncology, BC Cancer Agency
– sequence: 41
  givenname: Esther
  orcidid: 0000-0002-1315-4311
  surname: Kong
  fullname: Kong, Esther
  organization: Department of Molecular Oncology, BC Cancer Agency
– sequence: 42
  givenname: Daniel
  orcidid: 0000-0001-9203-6323
  surname: Lai
  fullname: Lai, Daniel
  organization: Department of Molecular Oncology, BC Cancer Agency
– sequence: 43
  givenname: Murtaza S.
  surname: Malbari
  fullname: Malbari, Murtaza S.
  organization: Weill Cornell Medicine
– sequence: 44
  givenname: Melissa
  surname: Marton
  fullname: Marton, Melissa
  organization: New York Genome Center
– sequence: 45
  givenname: Dina
  surname: Manaa
  fullname: Manaa, Dina
  organization: New York Genome Center
– sequence: 46
  givenname: Lara
  surname: Winterkorn
  fullname: Winterkorn, Lara
  organization: New York Genome Center
– sequence: 47
  givenname: Karen
  surname: Gelmon
  fullname: Gelmon, Karen
  organization: Department of Medical Oncology, BC Cancer Agency
– sequence: 48
  givenname: Margaret K.
  orcidid: 0000-0002-9087-0012
  surname: Callahan
  fullname: Callahan, Margaret K.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 49
  givenname: Genevieve
  orcidid: 0000-0002-7522-6173
  surname: Boland
  fullname: Boland, Genevieve
  organization: Mass General Cancer Center, Massachusetts General Hospital
– sequence: 50
  givenname: Catherine
  surname: Potenski
  fullname: Potenski, Catherine
  organization: New York Genome Center, Weill Cornell Medicine
– sequence: 51
  givenname: Jedd D.
  orcidid: 0000-0001-6718-2222
  surname: Wolchok
  fullname: Wolchok, Jedd D.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 52
  givenname: Ashish
  surname: Saxena
  fullname: Saxena, Ashish
  organization: Weill Cornell Medicine
– sequence: 53
  givenname: Samra
  orcidid: 0000-0001-8846-136X
  surname: Turajlic
  fullname: Turajlic, Samra
  organization: Cancer Dynamics Laboratory, The Francis Crick Institute, Renal and Skin Unit, The Royal Marsden NHS Foundation Trust
– sequence: 54
  givenname: Marcin
  orcidid: 0000-0002-2211-4741
  surname: Imielinski
  fullname: Imielinski, Marcin
  organization: New York Genome Center, Perlmutter Cancer Center, NYU Grossman School of Medicine
– sequence: 55
  givenname: Michael F.
  orcidid: 0000-0003-3882-5000
  surname: Berger
  fullname: Berger, Michael F.
  organization: Memorial Sloan Kettering Cancer Center
– sequence: 56
  givenname: Sam
  orcidid: 0000-0002-0487-9599
  surname: Aparicio
  fullname: Aparicio, Sam
  organization: Department of Molecular Oncology, BC Cancer Agency, Department of Pathology and Laboratory Medicine, University of British Columbia
– sequence: 57
  givenname: Nasser K.
  orcidid: 0000-0001-9754-9945
  surname: Altorki
  fullname: Altorki, Nasser K.
  organization: Weill Cornell Medicine
– sequence: 58
  givenname: Michael A.
  orcidid: 0000-0002-3367-7961
  surname: Postow
  fullname: Postow, Michael A.
  organization: Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine
– sequence: 59
  givenname: Nicolas
  orcidid: 0000-0001-5698-8183
  surname: Robine
  fullname: Robine, Nicolas
  organization: New York Genome Center
– sequence: 60
  givenname: Claus Lindbjerg
  orcidid: 0000-0002-7406-2103
  surname: Andersen
  fullname: Andersen, Claus Lindbjerg
  organization: Department of Molecular Medicine, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University
– sequence: 61
  givenname: Dan A.
  orcidid: 0000-0003-2346-9541
  surname: Landau
  fullname: Landau, Dan A.
  email: dlandau@nygenome.org
  organization: New York Genome Center, Weill Cornell Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38877116$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rFTEUxYNU7B_9Ai5kwI2b2GSSSSYbQYraQqEbC92FO5k776XMJM9kpuC3N9PXVu2iq4Sb3zk5l3NMDkIMSMh7zj5zJtrTLHljOGW1pEwwyah8RY54IxXlmt0clDvTLW1Now7Jcc63jBWsMW_IoWhbrTlXR2S4HucEGUP2s7_DajdCnoB2ZdRXUwx-jsmHTRWHal6mmKpuST2GasnrdAK39QHpiJBCGdDN4vsizH4TYKwwJO-2E4b5LXk9wJjx3cN5Qq6_f_t5dk4vr35cnH29pE5qOdPaDdqgGbjQ3ADr6h5RoBIIquWcIw7GQIvgOtezHhQKqLkWHShnRKNAnJAve9_d0k3Yu_J1gtHukp8g_bYRvP3_Jfit3cQ7qxVXXIpi8OnBIMVfC-bZTj47HEcIGJdsBVOtlkYbXtCPz9DbuKSy9z1llDFKr9SHfxM9RXmsoAD1HnAp5pxweEI4s2vPdt-zLT3b-56tLKL2mcj5GWYf1638-LJU7KV5tzaL6W_sF1R_ADS7v98
CitedBy_id crossref_primary_10_1016_j_apsb_2025_05_036
crossref_primary_10_1007_s00262_024_03887_z
crossref_primary_10_1186_s13046_025_03348_0
crossref_primary_10_1016_j_ejca_2024_114314
crossref_primary_10_1186_s12575_025_00287_0
crossref_primary_10_1177_10760296251339421
crossref_primary_10_1038_s41467_024_55428_y
crossref_primary_10_3389_fonc_2024_1486310
crossref_primary_10_1038_s41592_025_02648_9
crossref_primary_10_1007_s10238_025_01858_x
crossref_primary_10_1080_14737159_2025_2531065
crossref_primary_10_1016_j_annonc_2025_01_021
crossref_primary_10_1016_j_abb_2025_110599
crossref_primary_10_1080_17501911_2025_2500907
crossref_primary_10_1101_gr_278413_123
crossref_primary_10_1097_JS9_0000000000002206
crossref_primary_10_3390_ijms26051889
crossref_primary_10_1073_pnas_2426890122
crossref_primary_10_1016_j_jlb_2025_100301
crossref_primary_10_37349_etat_2025_1002333
crossref_primary_10_3389_fonc_2025_1492880
crossref_primary_10_1007_s13167_025_00413_8
crossref_primary_10_3390_ijms252413349
crossref_primary_10_3390_ijms252413669
crossref_primary_10_1016_S1470_2045_25_00139_1
crossref_primary_10_1016_j_annonc_2024_12_006
crossref_primary_10_1038_s41392_025_02243_6
crossref_primary_10_1038_s41585_025_01023_9
crossref_primary_10_1016_j_annonc_2025_03_008
crossref_primary_10_2340_1651_226X_2025_43320
crossref_primary_10_3390_foods13172665
crossref_primary_10_1016_j_jtho_2024_07_014
crossref_primary_10_3390_genes16010071
crossref_primary_10_1038_s44276_025_00135_4
crossref_primary_10_3748_wjg_v31_i11_104170
crossref_primary_10_1016_j_cca_2025_120385
crossref_primary_10_1016_j_mcp_2025_102024
crossref_primary_10_1038_s41571_025_01033_x
crossref_primary_10_1245_s10434_025_17601_5
Cites_doi 10.1038/nbt.2203
10.1016/S1470-2045(21)00149-2
10.1200/PO.21.00182
10.1038/nbt.3520
10.21873/anticanres.11360
10.1038/s41467-017-00965-y
10.1126/science.aav1898
10.1126/scitranslmed.aat4921
10.1002/gcc.22539
10.1038/nature11247
10.1101/861054
10.1001/jamaoncol.2019.3616
10.1126/scitranslmed.aaz8084
10.1093/nar/gkw520
10.1038/ng.2760
10.1002/1878-0261.13294
10.1016/j.cell.2015.12.050
10.1200/JCO.21.01570
10.1038/nbt.1518
10.2196/resprot.6346
10.1038/s41467-021-25432-7
10.1093/bioinformatics/btw389
10.1101/2022.05.29.493900
10.1056/NEJMoa2200075
10.1101/cshperspect.a026625
10.1002/cpbi.17
10.1016/j.semcancer.2013.01.001
10.1126/science.aag0299
10.4321/S1130-01082005000100002
10.1038/s41467-021-24109-5
10.1016/j.annonc.2020.11.007
10.1101/237578
10.1186/1471-2105-15-182
10.1038/s41591-022-02115-4
10.1038/s41586-019-1272-6
10.1038/nature12477
10.1126/sciadv.abc4308
10.5281/zenodo.5512044
10.1001/jamaoncol.2019.0528
10.1038/nmeth.1906
10.1158/1078-0432.CCR-21-2404
10.1038/s41591-020-0915-3
10.1038/s41551-022-00855-9
10.1038/nmeth.3582
10.1016/j.cell.2020.09.001
10.1093/annonc/mdu479
10.3390/cancers12061482
10.1016/j.ccell.2018.03.007
10.7554/eLife.71569
10.1038/s41587-021-01070-8
10.1016/j.jmoldx.2014.12.006
10.5281/zenodo.7234506
10.1038/s41586-020-2308-7
10.1038/nature14221
10.1016/j.cell.2015.11.050
10.1038/s41586-021-03642-9
10.1158/2159-8290.CD-20-0047
10.1158/1538-7445.AM2022-5114
10.1371/journal.pgen.1006162
10.1101/847681
10.18632/oncotarget.25053
10.1126/scitranslmed.aan2415
10.1038/s43018-020-0096-5
10.1158/1078-0432.CCR-21-1283
10.1016/j.cell.2019.02.051
10.1038/s41586-019-1907-7
10.1038/s41588-023-01446-3
10.1093/bioinformatics/btp324
10.1056/NEJMoa1709684
10.1136/gutjnl-2014-308859
10.1038/s41587-021-00981-w
10.1093/clinchem/hvab274
10.1038/nm.3519
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41591-024-03040-4
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database (ProQuest)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Animal Behavior Abstracts
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Research Library Prep
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: Proquest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1546-170X
EndPage 1666
ExternalDocumentID PMC7616143
38877116
10_1038_s41591_024_03040_4
Genre Journal Article
GrantInformation_xml – fundername: Melanoma Research Alliance (MRA)
  grantid: 1039927
  funderid: https://doi.org/10.13039/100005190
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: CA263301-01A1
  funderid: https://doi.org/10.13039/100000054
– fundername: Melanoma Research Alliance (MRA)
  grantid: 1039927
– fundername: Wellcome Trust
– fundername: NCI NIH HHS
  grantid: R01 CA266619
– fundername: Cancer Research UK
  grantid: CC2044
– fundername: NCI NIH HHS
  grantid: U01 CA247439
– fundername: U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
  grantid: CA263301-01A1
– fundername: NCI NIH HHS
  grantid: K08 CA263301
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: Cancer Research UK
  grantid: 29911
– fundername: NCI NIH HHS
  grantid: T32 CA079443
GroupedDBID ---
.-4
.55
.GJ
0R~
123
1CY
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABUWG
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IEA
IH2
IHR
IHW
INH
INR
IOF
IOV
ISR
ITC
J5H
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
MK0
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
UQL
X7M
XJT
YHZ
ZGI
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFFHD
AFHIU
AGSTI
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
XRW
AETEA
AGGLG
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7T5
7TK
7TM
7TO
7U7
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-2cf79e9f13719a0b2dee3e63ea68111eef99a8eacbcd0da6e3a2173ba6c9356a3
IEDL.DBID M2P
ISICitedReferencesCount 51
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247911100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1078-8956
1546-170X
IngestDate Tue Nov 04 02:05:35 EST 2025
Thu Oct 02 17:56:22 EDT 2025
Mon Oct 06 17:25:26 EDT 2025
Wed Dec 10 14:04:41 EST 2025
Sat Nov 29 06:02:36 EST 2025
Tue Nov 18 20:02:46 EST 2025
Fri Feb 21 02:37:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.
This work is licensed under a BY 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-2cf79e9f13719a0b2dee3e63ea68111eef99a8eacbcd0da6e3a2173ba6c9356a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors co-supervised
These authors contributed equally
ORCID 0000-0002-2833-6986
0000-0002-9104-7263
0000-0001-6044-3362
0000-0001-9042-6213
0000-0002-7522-6173
0000-0002-2422-3108
0000-0003-3355-5267
0000-0002-1028-1438
0000-0001-6412-6647
0000-0001-7574-4694
0000-0003-1117-9272
0000-0002-1315-4311
0000-0001-9203-6323
0000-0002-0487-9599
0000-0002-7406-2103
0000-0001-5698-8183
0000-0001-8846-136X
0000-0002-2211-4741
0000-0003-3882-5000
0000-0001-5723-6303
0000-0002-3667-0992
0000-0001-6718-2222
0000-0001-7953-0677
0000-0002-0905-2742
0000-0002-3367-7961
0000-0003-2346-9541
0000-0001-8703-8877
0000-0001-9552-5421
0000-0002-4625-3009
0000-0001-9754-9945
0009-0001-0223-3401
0000-0002-9087-0012
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7616143
PMID 38877116
PQID 3069699671
PQPubID 33975
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7616143
proquest_miscellaneous_3068749791
proquest_journals_3069699671
pubmed_primary_38877116
crossref_primary_10_1038_s41591_024_03040_4
crossref_citationtrail_10_1038_s41591_024_03040_4
springer_journals_10_1038_s41591_024_03040_4
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Nature medicine
PublicationTitleAbbrev Nat Med
PublicationTitleAlternate Nat Med
PublicationYear 2024
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References SnyderMWKircherMHillAJDazaRMShendureJCell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-originCell201616457681:CAS:528:DC%2BC28XhtFShsbs%3D267714854715266
Weber, S. et al. Dynamic changes of circulating tumor DNA predict clinical outcome in patients with advanced non–small-cell lung cancer treated with immune checkpoint inhibitors. JCO Precis. Oncol.https://doi.org/10.1200/PO.21.00182 (2021).
Imielinski, M. et al. fragCounter: GC and mappability corrected fragment coverage for paired end whole genome sequencing. GitHubhttps://github.com/mskilab-org/fragCounter (2018).
UnderhillHRFragment length of circulating tumor DNAPLoS Genet.201612e1006162274280494948782
AvanziniSA mathematical model of ctDNA shedding predicts tumor detection sizeSci. Adv.20206eabc4308333108477732186
Illumina. TruSeq DNA PCR-Free Reference Guide (Illumina, 2017).
Benjamin, D. et al. Calling somatic SNVs and indels with Mutect2. Preprint at bioRxivhttps://doi.org/10.1101/861054 (2019).
MagbanuaMJMCirculating tumor DNA in neoadjuvant-treated breast cancer reflects response and survivalAnn. Oncol.2021322292391:CAS:528:DC%2BB38XhvVKrtbs%3D33232761
ShawJSerial postoperative ctDNA monitoring of breast cancer recurrenceJ. Clin. Orthod.202240562
Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2415 (2017).
KotaniDMolecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancerNat. Med.2023291271341:CAS:528:DC%2BB3sXhslKht7Y%3D366468029873552
ReinertTAnalysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgeryGut2016656256341:CAS:528:DC%2BC2sXivV2mt7k%3D25654990
KarczewskiKJThe mutational constraint spectrum quantified from variation in 141,456 humansNature20205814344431:CAS:528:DC%2BB3cXhtVanu7jF324616547334197
AlexandrovLBMutational signatures associated with tobacco smoking in human cancerScience20163546186221:CAS:528:DC%2BC28XhslKgt7vK278112756141049
AdalsteinssonVAScalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumorsNat. Commun.20178291093935673918
NabetBYNoninvasive early identification of therapeutic benefit from immune checkpoint inhibitionCell20201833633761:CAS:528:DC%2BB3cXhvFyqt7%2FM330072677572899
ReinertTAnalysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancerJAMA Oncol.2019511241131310706916512280
TanACAbstract 5114: ultra-sensitive detection of minimal residual disease (MRD) through whole genome sequencing (WGS) using an AI-based error suppression model in resected early-stage non-small cell lung cancer (NSCLC)Cancer Res.2022825114
AmemiyaHMKundajeABoyleAPThe ENCODE blacklist: identification of problematic regions of the genomeSci. Rep.20199312493616597582
JiangPPreferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinomaProc. Natl Acad. Sci. USA2018115E10925E109331:CAS:528:DC%2BC1cXit1SgtLrM303738226243268
RasmussenLProtocol outlines for parts 1 and 2 of the prospective endoscopy III study for the early detection of colorectal cancer: validation of a concept based on blood biomarkersJMIR Res. Protoc.20165e182276248155039335
Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01070-8 (2021).
Kurtz, D. M. et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00981-w (2021).
HaradhvalaNJMutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repairCell20161645385491:CAS:528:DC%2BC28XhsVKitbg%3D268061294753048
RozowskyJPeakSeq enables systematic scoring of ChIP-seq experiments relative to controlsNat. Biotechnol.20092766751:CAS:528:DC%2BD1MXhtVOrtQ%3D%3D191226512924752
Cindy YangSYPan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivityNat. Commun.2021121:CAS:528:DC%2BB3MXhvFSrtL7M344467288390680
CarterSLAbsolute quantification of somatic DNA alterations in human cancerNat. Biotechnol.2012304134211:CAS:528:DC%2BC38Xmt1Gktb4%3D225440224383288
CristianoSGenome-wide cell-free DNA fragmentation in patients with cancerNature20195703853891:CAS:528:DC%2BC1MXhtVOgt7fI311428406774252
HenriksenTVError characterization and statistical modeling improves circulating tumor DNA detection by droplet digital PCRClin. Chem.20226865766735030248
Alcántara TorresMDNA aneuploidy in colorectal adenomas. Role in the adenoma-carcinoma sequenceRev. Esp. Enferm. Dig.20059771515801893
Zhang, Q. et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-20-0047 (2020).
WooYHLiW-HDNA replication timing and selection shape the landscape of nucleotide variation in cancer genomesNat. Commun.2012322893128
BruhmDCSingle-molecule genome-wide mutation profiles of cell-free DNA for non-invasive detection of cancerNat. Genet.202355130113101:CAS:528:DC%2BB3sXhsFOitbfF3750072810412448
PolakPCell-of-origin chromatin organization shapes the mutational landscape of cancerNature20155183603641:CAS:528:DC%2BC2MXjtVSktbo%3D256935674405175
TieJCirculating tumor DNA analysis guiding adjuvant therapy in stage II colon cancerN. Engl. J. Med.2022386226122721:CAS:528:DC%2BB38Xit1ersL3K356573209701133
Zivich, P., Davidson-Pilon, C., Reger, D., Diong, J. & The Gitter Badger. pzivich/zEpid: v.0.9.0. Zenodohttps://doi.org/10.5281/zenodo.7234506 (2020).
Haque, I. S. & Elemento, O. Challenges in using ctDNA to achieve early detection of cancer. Preprint at bioRxivhttps://doi.org/10.1101/237578 (2017).
Deshpande, A., Walradt, T., Hu, Y., Koren, A. & Imielinski, M. Robust foreground detection in somatic copy number data. Preprint at bioRxivhttps://doi.org/10.1101/847681 (2019).
BaiXEarly use of high-dose glucocorticoid for the management of irAE is associated with poorer survival in patients with advanced melanoma treated with anti-PD-1 monotherapyClin. Cancer Res.202127599360001:CAS:528:DC%2BB3MXislKgtrnF343765369401488
Postow, M. A. et al. Adaptive dosing of nivolumab + ipilimumab immunotherapy based upon early, interim radiographic assessment in advanced melanoma (The ADAPT-IT Study). J. Clin. Oncol. https://doi.org/10.1200/JCO.21.01570 (2021).
Davidson-Pilon, C. lifelines, survival analysis in Python. Zenodohttps://doi.org/10.5281/zenodo.5512044 (2021).
ZviranAGenome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoringNat. Med.202026111411241:CAS:528:DC%2BB3cXhtVGmtbrN324833608108131
NewmanAMIntegrated digital error suppression for improved detection of circulating tumor DNANat. Biotechnol.2016345475551:CAS:528:DC%2BC28XkvV2itb8%3D270187994907374
WolffRKMutation analysis of adenomas and carcinomas of the colon: early and late driversGenes Chromosomes Cancer2018573663761:CAS:528:DC%2BC1cXosVajsLs%3D295755365951744
KageyamaS-IRadiotherapy increases plasma levels of tumoral cell-free DNA in non-small cell lung cancer patientsOncotarget201891936819378297212095922403
Almogy, G. et al. Cost-efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. Preprint at bioRxivhttps://doi.org/10.1101/2022.05.29.493900 (2022).
ShenRSeshanVEFACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencingNucleic Acids Res.201644e131272700795027494
ErnstJKellisMChromHMM: automating chromatin-state discovery and characterizationNat. Methods201292152161:CAS:528:DC%2BC38XivV2rtLk%3D223739073577932
LinYIntensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysisRadiat. Oncol.201813302171656137729
MouliereFEnhanced detection of circulating tumor DNA by fragment size analysisSci. Transl. Med.201810eaat4921304048636483061
Wan, J. C. M. et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz8084 (2020).
LiHDurbinRFast and accurate short read alignment with Burrows–Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D194511682705234
GalanopoulosMComparative study of mutations in single nucleotide polymorphism loci of KRAS and BRAF genes in patients who underwent screening colonoscopy, with and without premalignant intestinal polypsAnticancer Res.2017376516571:CAS:528:DC%2BC1cXitlaitL7M28179313
Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026625 (2017).
DonleyNThayerMJDNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instabilitySemin. Cancer Biol.20132380891:CAS:528:DC%2BC3sXit1Oisbo%3D233279853615080
JiangHLeiRDingS-WZhuSSkewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end readsBMC Bioinform.201415182
Junca, A. et al. Detection of colorectal cancer and advanced adenoma by liquid biopsy (Decalib Study): the ddPCR challenge. Cancershttps://doi.org/10.3390/cancers12061482 (2020).
Renaud, G. et al. Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization. eLifehttps://doi.org/10.7554/eLife.71569 (2022).
TieJCirculating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancerJAMA Oncol.2019517101717316218016802034
ChengDTMemorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor mole
AM Taylor (3040_CR29) 2018; 33
TV Henriksen (3040_CR80) 2022; 16
SL Carter (3040_CR32) 2012; 30
HR Underhill (3040_CR20) 2016; 12
A Gonzalez-Perez (3040_CR23) 2019; 177
MR Corces (3040_CR73) 2018; 362
J Tie (3040_CR40) 2019; 5
3040_CR70
S Cristiano (3040_CR33) 2019; 570
AM Newman (3040_CR15) 2016; 34
3040_CR30
AC Tan (3040_CR39) 2022; 82
3040_CR76
3040_CR9
3040_CR78
LB Alexandrov (3040_CR19) 2016; 354
KJ Karczewski (3040_CR68) 2020; 581
3040_CR36
H Li (3040_CR63) 2009; 25
J Ernst (3040_CR74) 2012; 9
SV Bratman (3040_CR2) 2020; 1
X Bai (3040_CR57) 2021; 27
L Rasmussen (3040_CR47) 2016; 5
G Gydush (3040_CR17) 2022; 6
N Donley (3040_CR26) 2013; 23
SY Cindy Yang (3040_CR51) 2021; 12
AM Newman (3040_CR5) 2014; 20
F Favero (3040_CR67) 2015; 26
ENCODE Project Consortium. (3040_CR71) 2012; 489
A Rose Brannon (3040_CR7) 2021; 12
YH Woo (3040_CR24) 2012; 3
J Tie (3040_CR3) 2022; 386
A Zviran (3040_CR14) 2020; 26
LB Alexandrov (3040_CR18) 2013; 500
J Guo (3040_CR22) 2020; 21
HM Amemiya (3040_CR69) 2019; 9
3040_CR61
VA Adalsteinsson (3040_CR53) 2017; 8
JD Wolchok (3040_CR56) 2017; 377
TI Zack (3040_CR37) 2013; 45
B van de Geijn (3040_CR77) 2015; 12
RK Wolff (3040_CR50) 2018; 57
T Reinert (3040_CR38) 2019; 5
MJM Magbanua (3040_CR8) 2021; 32
S-I Kageyama (3040_CR42) 2018; 9
EA Bergmann (3040_CR65) 2016; 32
DT Cheng (3040_CR81) 2015; 17
D Kotani (3040_CR10) 2023; 29
K Arora (3040_CR66) 2019; 9
F Mouliere (3040_CR21) 2018; 10
BY Nabet (3040_CR6) 2020; 183
M Alcántara Torres (3040_CR48) 2005; 97
3040_CR52
3040_CR11
3040_CR55
T Reinert (3040_CR62) 2016; 65
3040_CR54
3040_CR12
DC Bruhm (3040_CR28) 2023; 55
3040_CR59
3040_CR58
M Gerstung (3040_CR60) 2020; 578
3040_CR16
MW Snyder (3040_CR34) 2016; 164
M Galanopoulos (3040_CR46) 2017; 37
NJ Haradhvala (3040_CR25) 2016; 164
NNM Myint (3040_CR44) 2018; 9
P Jiang (3040_CR35) 2018; 115
J Rozowsky (3040_CR72) 2009; 27
KM Raine (3040_CR31) 2016; 56
J Shaw (3040_CR43) 2022; 40
S Avanzini (3040_CR13) 2020; 6
P Polak (3040_CR27) 2015; 518
K Xiong (3040_CR75) 2019; 10
Y Lin (3040_CR49) 2018; 13
3040_CR4
3040_CR1
TV Henriksen (3040_CR79) 2022; 68
3040_CR84
3040_CR83
H Jiang (3040_CR64) 2014; 15
NK Altorki (3040_CR41) 2021; 22
3040_CR45
R Shen (3040_CR82) 2016; 44
References_xml – reference: Henriksen, T. V. et al. Circulating tumor DNA in stage III colorectal cancer, beyond minimal residual disease detection, towards assessment of adjuvant therapy efficacy and clinical behavior of recurrences. Clin. Cancer Res. https://doi.org/10.1158/1078-0432.CCR-21-2404 (2021).
– reference: UnderhillHRFragment length of circulating tumor DNAPLoS Genet.201612e1006162274280494948782
– reference: BergmannEAChenB-JAroraKVacicVZodyMCConpair: concordance and contamination estimator for matched tumor-normal pairsBioinformatics201632319631981:CAS:528:DC%2BC2sXht1ajtbjP273546995048070
– reference: BratmanSVPersonalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumabNat. Cancer202018738811:CAS:528:DC%2BB38XjsFeisLg%3D35121950
– reference: AlexandrovLBSignatures of mutational processes in human cancerNature20135004154211:CAS:528:DC%2BC3sXhtlWjur7M239455923776390
– reference: Almogy, G. et al. Cost-efficient whole genome-sequencing using novel mostly natural sequencing-by-synthesis chemistry and open fluidics platform. Preprint at bioRxivhttps://doi.org/10.1101/2022.05.29.493900 (2022).
– reference: MagbanuaMJMCirculating tumor DNA in neoadjuvant-treated breast cancer reflects response and survivalAnn. Oncol.2021322292391:CAS:528:DC%2BB38XhvVKrtbs%3D33232761
– reference: AlexandrovLBMutational signatures associated with tobacco smoking in human cancerScience20163546186221:CAS:528:DC%2BC28XhslKgt7vK278112756141049
– reference: ShawJSerial postoperative ctDNA monitoring of breast cancer recurrenceJ. Clin. Orthod.202240562
– reference: ShenRSeshanVEFACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencingNucleic Acids Res.201644e131272700795027494
– reference: RozowskyJPeakSeq enables systematic scoring of ChIP-seq experiments relative to controlsNat. Biotechnol.20092766751:CAS:528:DC%2BD1MXhtVOrtQ%3D%3D191226512924752
– reference: Zivich, P., Davidson-Pilon, C., Reger, D., Diong, J. & The Gitter Badger. pzivich/zEpid: v.0.9.0. Zenodohttps://doi.org/10.5281/zenodo.7234506 (2020).
– reference: Wan, J. C. M. et al. ctDNA monitoring using patient-specific sequencing and integration of variant reads. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz8084 (2020).
– reference: Junca, A. et al. Detection of colorectal cancer and advanced adenoma by liquid biopsy (Decalib Study): the ddPCR challenge. Cancershttps://doi.org/10.3390/cancers12061482 (2020).
– reference: TaylorAMGenomic and functional approaches to understanding cancer aneuploidyCancer Cell201833676689.e31:CAS:528:DC%2BC1cXmvVGrur0%3D296224636028190
– reference: NewmanAMAn ultrasensitive method for quantitating circulating tumor DNA with broad patient coverageNat. Med.2014205485541:CAS:528:DC%2BC2cXls1Kjt70%3D247053334016134
– reference: SnyderMWKircherMHillAJDazaRMShendureJCell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-originCell201616457681:CAS:528:DC%2BC28XhtFShsbs%3D267714854715266
– reference: HaradhvalaNJMutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repairCell20161645385491:CAS:528:DC%2BC28XhsVKitbg%3D268061294753048
– reference: AdalsteinssonVAScalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumorsNat. Commun.20178291093935673918
– reference: AvanziniSA mathematical model of ctDNA shedding predicts tumor detection sizeSci. Adv.20206eabc4308333108477732186
– reference: AltorkiNKNeoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trialLancet Oncol.2021228248351:CAS:528:DC%2BB3MXhsFCgt7vK34015311
– reference: ReinertTAnalysis of plasma cell-free DNA by ultradeep sequencing in patients with stages I to III colorectal cancerJAMA Oncol.2019511241131310706916512280
– reference: RasmussenLProtocol outlines for parts 1 and 2 of the prospective endoscopy III study for the early detection of colorectal cancer: validation of a concept based on blood biomarkersJMIR Res. Protoc.20165e182276248155039335
– reference: RaineKMAscatNgs: identifying somatically acquired copy-number alterations from whole-genome sequencing dataCurr. Protoc. Bioinform.20165615.9.115.9.17
– reference: JiangHLeiRDingS-WZhuSSkewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end readsBMC Bioinform.201415182
– reference: HenriksenTVComparing single-target and multitarget approaches for postoperative circulating tumour DNA detection in stage II-III colorectal cancer patientsMol. Oncol.202216365436651:CAS:528:DC%2BB38XisVKjt73M358954389580876
– reference: Benjamin, D. et al. Calling somatic SNVs and indels with Mutect2. Preprint at bioRxivhttps://doi.org/10.1101/861054 (2019).
– reference: WooYHLiW-HDNA replication timing and selection shape the landscape of nucleotide variation in cancer genomesNat. Commun.2012322893128
– reference: LinYIntensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysisRadiat. Oncol.201813302171656137729
– reference: GydushGMassively parallel enrichment of low-frequency alleles enables duplex sequencing at low depthNat. Biomed. Eng.202262572661:CAS:528:DC%2BB38XhsVSqt77K353014509089460
– reference: TanACAbstract 5114: ultra-sensitive detection of minimal residual disease (MRD) through whole genome sequencing (WGS) using an AI-based error suppression model in resected early-stage non-small cell lung cancer (NSCLC)Cancer Res.2022825114
– reference: ENCODE Project Consortium.An integrated encyclopedia of DNA elements in the human genomeNature20124895774
– reference: Powles, T. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Naturehttps://doi.org/10.1038/s41586-021-03642-9 (2021).
– reference: WolchokJDOverall survival with combined nivolumab and ipilimumab in advanced melanomaN. Engl. J. Med.2017377134513561:CAS:528:DC%2BC2sXhs1Git73I288897925706778
– reference: Alcántara TorresMDNA aneuploidy in colorectal adenomas. Role in the adenoma-carcinoma sequenceRev. Esp. Enferm. Dig.20059771515801893
– reference: KarczewskiKJThe mutational constraint spectrum quantified from variation in 141,456 humansNature20205814344431:CAS:528:DC%2BB3cXhtVanu7jF324616547334197
– reference: JiangPPreferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinomaProc. Natl Acad. Sci. USA2018115E10925E109331:CAS:528:DC%2BC1cXit1SgtLrM303738226243268
– reference: Haque, I. S. & Elemento, O. Challenges in using ctDNA to achieve early detection of cancer. Preprint at bioRxivhttps://doi.org/10.1101/237578 (2017).
– reference: BruhmDCSingle-molecule genome-wide mutation profiles of cell-free DNA for non-invasive detection of cancerNat. Genet.202355130113101:CAS:528:DC%2BB3sXhsFOitbfF3750072810412448
– reference: Illumina. TruSeq DNA PCR-Free Reference Guide (Illumina, 2017).
– reference: Davidson-Pilon, C. lifelines, survival analysis in Python. Zenodohttps://doi.org/10.5281/zenodo.5512044 (2021).
– reference: HenriksenTVError characterization and statistical modeling improves circulating tumor DNA detection by droplet digital PCRClin. Chem.20226865766735030248
– reference: CarterSLAbsolute quantification of somatic DNA alterations in human cancerNat. Biotechnol.2012304134211:CAS:528:DC%2BC38Xmt1Gktb4%3D225440224383288
– reference: KageyamaS-IRadiotherapy increases plasma levels of tumoral cell-free DNA in non-small cell lung cancer patientsOncotarget201891936819378297212095922403
– reference: Kurtz, D. M. et al. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00981-w (2021).
– reference: ZviranAGenome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoringNat. Med.202026111411241:CAS:528:DC%2BB3cXhtVGmtbrN324833608108131
– reference: TieJCirculating tumor DNA analysis guiding adjuvant therapy in stage II colon cancerN. Engl. J. Med.2022386226122721:CAS:528:DC%2BB38Xit1ersL3K356573209701133
– reference: Chowell, D. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01070-8 (2021).
– reference: PolakPCell-of-origin chromatin organization shapes the mutational landscape of cancerNature20155183603641:CAS:528:DC%2BC2MXjtVSktbo%3D256935674405175
– reference: ZackTIPan-cancer patterns of somatic copy number alterationNat. Genet.201345113411401:CAS:528:DC%2BC3sXhsFWms7vL240718523966983
– reference: Imielinski, M. et al. fragCounter: GC and mappability corrected fragment coverage for paired end whole genome sequencing. GitHubhttps://github.com/mskilab-org/fragCounter (2018).
– reference: FaveroFSequenza: allele-specific copy number and mutation profiles from tumor sequencing dataAnn. Oncol.20152664701:STN:280:DC%2BC2M3gvFOqtA%3D%3D25319062
– reference: CorcesMRThe chromatin accessibility landscape of primary human cancersScience2018362eaav1898303613416408149
– reference: Deshpande, A., Walradt, T., Hu, Y., Koren, A. & Imielinski, M. Robust foreground detection in somatic copy number data. Preprint at bioRxivhttps://doi.org/10.1101/847681 (2019).
– reference: NewmanAMIntegrated digital error suppression for improved detection of circulating tumor DNANat. Biotechnol.2016345475551:CAS:528:DC%2BC28XkvV2itb8%3D270187994907374
– reference: NabetBYNoninvasive early identification of therapeutic benefit from immune checkpoint inhibitionCell20201833633761:CAS:528:DC%2BB3cXhvFyqt7%2FM330072677572899
– reference: LiHDurbinRFast and accurate short read alignment with Burrows–Wheeler transformBioinformatics200925175417601:CAS:528:DC%2BD1MXot1Cjtbo%3D194511682705234
– reference: Rose BrannonAEnhanced specificity of clinical high-sensitivity tumor mutation profiling in cell-free DNA via paired normal sequencing using MSK-ACCESSNat. Commun.2021121:CAS:528:DC%2BB3MXhsFKns7zJ341452828213710
– reference: ReinertTAnalysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgeryGut2016656256341:CAS:528:DC%2BC2sXivV2mt7k%3D25654990
– reference: Renaud, G. et al. Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization. eLifehttps://doi.org/10.7554/eLife.71569 (2022).
– reference: ChengDTMemorial Sloan Kettering-integrated mutation profiling of actionable cancer targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncologyJ. Mol. Diagn.2015172512641:CAS:528:DC%2BC2MXlt1aitLc%3D258018215808190
– reference: ErnstJKellisMChromHMM: automating chromatin-state discovery and characterizationNat. Methods201292152161:CAS:528:DC%2BC38XivV2rtLk%3D223739073577932
– reference: van de GeijnBMcVickerGGiladYPritchardJKWASP: allele-specific software for robust molecular quantitative trait locus discoveryNat. Methods20151210611063263669874626402
– reference: MouliereFEnhanced detection of circulating tumor DNA by fragment size analysisSci. Transl. Med.201810eaat4921304048636483061
– reference: AroraKDeep whole-genome sequencing of 3 cancer cell lines on 2 sequencing platformsSci. Rep.201991:CAS:528:DC%2BC1MXisVarurbK318367836911065
– reference: Cindy YangSYPan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivityNat. Commun.2021121:CAS:528:DC%2BB3MXhvFSrtL7M344467288390680
– reference: DonleyNThayerMJDNA replication timing, genome stability and cancer: late and/or delayed DNA replication timing is associated with increased genomic instabilitySemin. Cancer Biol.20132380891:CAS:528:DC%2BC3sXit1Oisbo%3D233279853615080
– reference: MyintNNMCirculating tumor DNA in patients with colorectal adenomas: assessment of detectability and genetic heterogeneityCell Death Dis.20189301665316117318
– reference: CristianoSGenome-wide cell-free DNA fragmentation in patients with cancerNature20195703853891:CAS:528:DC%2BC1MXhtVOgt7fI311428406774252
– reference: Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aan2415 (2017).
– reference: BaiXEarly use of high-dose glucocorticoid for the management of irAE is associated with poorer survival in patients with advanced melanoma treated with anti-PD-1 monotherapyClin. Cancer Res.202127599360001:CAS:528:DC%2BB3MXislKgtrnF343765369401488
– reference: GalanopoulosMComparative study of mutations in single nucleotide polymorphism loci of KRAS and BRAF genes in patients who underwent screening colonoscopy, with and without premalignant intestinal polypsAnticancer Res.2017376516571:CAS:528:DC%2BC1cXitlaitL7M28179313
– reference: Weber, S. et al. Dynamic changes of circulating tumor DNA predict clinical outcome in patients with advanced non–small-cell lung cancer treated with immune checkpoint inhibitors. JCO Precis. Oncol.https://doi.org/10.1200/PO.21.00182 (2021).
– reference: GerstungMThe evolutionary history of 2,658 cancersNature20205781221281:CAS:528:DC%2BB3cXktlClsLw%3D320250137054212
– reference: GuoJQuantitative characterization of tumor cell-free DNA shorteningBMC Genomics2020211:CAS:528:DC%2BB3cXhsVWhsrrL326507157350596
– reference: Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026625 (2017).
– reference: WolffRKMutation analysis of adenomas and carcinomas of the colon: early and late driversGenes Chromosomes Cancer2018573663761:CAS:528:DC%2BC1cXosVajsLs%3D295755365951744
– reference: XiongKMaJRevealing Hi-C subcompartments by imputing inter-chromosomal chromatin interactionsNat. Commun.201910316999856838123
– reference: KotaniDMolecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancerNat. Med.2023291271341:CAS:528:DC%2BB3sXhslKht7Y%3D366468029873552
– reference: Postow, M. A. et al. Adaptive dosing of nivolumab + ipilimumab immunotherapy based upon early, interim radiographic assessment in advanced melanoma (The ADAPT-IT Study). J. Clin. Oncol. https://doi.org/10.1200/JCO.21.01570 (2021).
– reference: Zhang, Q. et al. Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-20-0047 (2020).
– reference: AmemiyaHMKundajeABoyleAPThe ENCODE blacklist: identification of problematic regions of the genomeSci. Rep.20199312493616597582
– reference: TieJCirculating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancerJAMA Oncol.2019517101717316218016802034
– reference: Gonzalez-PerezASabarinathanRLopez-BigasNLocal determinants of the mutational landscape of the human genomeCell20191771011141:CAS:528:DC%2BC1MXlvVWgtLY%3D30901533
– volume: 30
  start-page: 413
  year: 2012
  ident: 3040_CR32
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2203
– volume: 22
  start-page: 824
  year: 2021
  ident: 3040_CR41
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(21)00149-2
– ident: 3040_CR54
  doi: 10.1200/PO.21.00182
– volume: 34
  start-page: 547
  year: 2016
  ident: 3040_CR15
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3520
– volume: 37
  start-page: 651
  year: 2017
  ident: 3040_CR46
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.11360
– volume: 8
  year: 2017
  ident: 3040_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00965-y
– volume: 362
  start-page: eaav1898
  year: 2018
  ident: 3040_CR73
  publication-title: Science
  doi: 10.1126/science.aav1898
– volume: 10
  start-page: eaat4921
  year: 2018
  ident: 3040_CR21
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aat4921
– volume: 57
  start-page: 366
  year: 2018
  ident: 3040_CR50
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.22539
– volume: 489
  start-page: 57
  year: 2012
  ident: 3040_CR71
  publication-title: Nature
  doi: 10.1038/nature11247
– ident: 3040_CR70
  doi: 10.1101/861054
– volume: 5
  start-page: 1710
  year: 2019
  ident: 3040_CR40
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2019.3616
– ident: 3040_CR16
  doi: 10.1126/scitranslmed.aaz8084
– volume: 44
  start-page: e131
  year: 2016
  ident: 3040_CR82
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw520
– volume: 45
  start-page: 1134
  year: 2013
  ident: 3040_CR37
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2760
– volume: 9
  year: 2018
  ident: 3040_CR44
  publication-title: Cell Death Dis.
– volume: 9
  year: 2019
  ident: 3040_CR69
  publication-title: Sci. Rep.
– volume: 16
  start-page: 3654
  year: 2022
  ident: 3040_CR80
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.13294
– volume: 164
  start-page: 538
  year: 2016
  ident: 3040_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.050
– ident: 3040_CR52
  doi: 10.1200/JCO.21.01570
– volume: 27
  start-page: 66
  year: 2009
  ident: 3040_CR72
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1518
– volume: 5
  start-page: e182
  year: 2016
  ident: 3040_CR47
  publication-title: JMIR Res. Protoc.
  doi: 10.2196/resprot.6346
– volume: 12
  year: 2021
  ident: 3040_CR51
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25432-7
– volume: 32
  start-page: 3196
  year: 2016
  ident: 3040_CR65
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw389
– ident: 3040_CR58
  doi: 10.1101/2022.05.29.493900
– volume: 386
  start-page: 2261
  year: 2022
  ident: 3040_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2200075
– ident: 3040_CR78
  doi: 10.1101/cshperspect.a026625
– volume: 56
  start-page: 15.9.1
  year: 2016
  ident: 3040_CR31
  publication-title: Curr. Protoc. Bioinform.
  doi: 10.1002/cpbi.17
– volume: 23
  start-page: 80
  year: 2013
  ident: 3040_CR26
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2013.01.001
– volume: 354
  start-page: 618
  year: 2016
  ident: 3040_CR19
  publication-title: Science
  doi: 10.1126/science.aag0299
– volume: 3
  year: 2012
  ident: 3040_CR24
  publication-title: Nat. Commun.
– volume: 97
  start-page: 7
  year: 2005
  ident: 3040_CR48
  publication-title: Rev. Esp. Enferm. Dig.
  doi: 10.4321/S1130-01082005000100002
– volume: 12
  year: 2021
  ident: 3040_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24109-5
– volume: 32
  start-page: 229
  year: 2021
  ident: 3040_CR8
  publication-title: Ann. Oncol.
  doi: 10.1016/j.annonc.2020.11.007
– ident: 3040_CR12
  doi: 10.1101/237578
– volume: 15
  start-page: 182
  year: 2014
  ident: 3040_CR64
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-15-182
– volume: 29
  start-page: 127
  year: 2023
  ident: 3040_CR10
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-02115-4
– volume: 570
  start-page: 385
  year: 2019
  ident: 3040_CR33
  publication-title: Nature
  doi: 10.1038/s41586-019-1272-6
– volume: 500
  start-page: 415
  year: 2013
  ident: 3040_CR18
  publication-title: Nature
  doi: 10.1038/nature12477
– volume: 6
  start-page: eabc4308
  year: 2020
  ident: 3040_CR13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc4308
– ident: 3040_CR83
  doi: 10.5281/zenodo.5512044
– volume: 5
  start-page: 1124
  year: 2019
  ident: 3040_CR38
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2019.0528
– volume: 9
  start-page: 215
  year: 2012
  ident: 3040_CR74
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1906
– volume: 9
  year: 2019
  ident: 3040_CR66
  publication-title: Sci. Rep.
– ident: 3040_CR9
  doi: 10.1158/1078-0432.CCR-21-2404
– volume: 26
  start-page: 1114
  year: 2020
  ident: 3040_CR14
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0915-3
– volume: 6
  start-page: 257
  year: 2022
  ident: 3040_CR17
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-022-00855-9
– volume: 12
  start-page: 1061
  year: 2015
  ident: 3040_CR77
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3582
– volume: 183
  start-page: 363
  year: 2020
  ident: 3040_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2020.09.001
– volume: 26
  start-page: 64
  year: 2015
  ident: 3040_CR67
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdu479
– ident: 3040_CR45
  doi: 10.3390/cancers12061482
– volume: 21
  year: 2020
  ident: 3040_CR22
  publication-title: BMC Genomics
– volume: 33
  start-page: 676
  year: 2018
  ident: 3040_CR29
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.007
– ident: 3040_CR36
  doi: 10.7554/eLife.71569
– ident: 3040_CR59
  doi: 10.1038/s41587-021-01070-8
– volume: 17
  start-page: 251
  year: 2015
  ident: 3040_CR81
  publication-title: J. Mol. Diagn.
  doi: 10.1016/j.jmoldx.2014.12.006
– ident: 3040_CR84
  doi: 10.5281/zenodo.7234506
– volume: 581
  start-page: 434
  year: 2020
  ident: 3040_CR68
  publication-title: Nature
  doi: 10.1038/s41586-020-2308-7
– volume: 518
  start-page: 360
  year: 2015
  ident: 3040_CR27
  publication-title: Nature
  doi: 10.1038/nature14221
– volume: 164
  start-page: 57
  year: 2016
  ident: 3040_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.050
– ident: 3040_CR1
  doi: 10.1038/s41586-021-03642-9
– ident: 3040_CR76
– ident: 3040_CR55
  doi: 10.1158/2159-8290.CD-20-0047
– volume: 82
  start-page: 5114
  year: 2022
  ident: 3040_CR39
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2022-5114
– volume: 12
  start-page: e1006162
  year: 2016
  ident: 3040_CR20
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006162
– ident: 3040_CR30
  doi: 10.1101/847681
– volume: 115
  start-page: E10925
  year: 2018
  ident: 3040_CR35
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 9
  start-page: 19368
  year: 2018
  ident: 3040_CR42
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.25053
– ident: 3040_CR4
  doi: 10.1126/scitranslmed.aan2415
– volume: 1
  start-page: 873
  year: 2020
  ident: 3040_CR2
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-020-0096-5
– volume: 27
  start-page: 5993
  year: 2021
  ident: 3040_CR57
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-21-1283
– volume: 10
  year: 2019
  ident: 3040_CR75
  publication-title: Nat. Commun.
– volume: 177
  start-page: 101
  year: 2019
  ident: 3040_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2019.02.051
– volume: 578
  start-page: 122
  year: 2020
  ident: 3040_CR60
  publication-title: Nature
  doi: 10.1038/s41586-019-1907-7
– volume: 55
  start-page: 1301
  year: 2023
  ident: 3040_CR28
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-023-01446-3
– volume: 25
  start-page: 1754
  year: 2009
  ident: 3040_CR63
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 377
  start-page: 1345
  year: 2017
  ident: 3040_CR56
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1709684
– volume: 65
  start-page: 625
  year: 2016
  ident: 3040_CR62
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-308859
– ident: 3040_CR11
  doi: 10.1038/s41587-021-00981-w
– volume: 68
  start-page: 657
  year: 2022
  ident: 3040_CR79
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/hvab274
– volume: 40
  start-page: 562
  year: 2022
  ident: 3040_CR43
  publication-title: J. Clin. Orthod.
– ident: 3040_CR61
– volume: 20
  start-page: 548
  year: 2014
  ident: 3040_CR5
  publication-title: Nat. Med.
  doi: 10.1038/nm.3519
– volume: 13
  year: 2018
  ident: 3040_CR49
  publication-title: Radiat. Oncol.
SSID ssj0003059
Score 2.618251
Snippet In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1655
SubjectTerms 631/208/69
692/699/67
Aneuploidy
Biomarkers, Tumor - blood
Biomarkers, Tumor - genetics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Circulating Tumor DNA - blood
Circulating Tumor DNA - genetics
Colorectal cancer
Colorectal Neoplasms - blood
Colorectal Neoplasms - genetics
Colorectal Neoplasms - pathology
Deep learning
Deoxyribonucleic acid
DNA
DNA Copy Number Variations
Enrichment
Gene sequencing
Genomes
Humans
Immunotherapy
Infectious Diseases
Learning algorithms
Lung cancer
Lung Neoplasms - blood
Lung Neoplasms - genetics
Lung Neoplasms - pathology
Machine Learning
Melanoma
Metabolic Diseases
Minimal residual disease
Molecular Medicine
Monitoring
Neoplasm, Residual - genetics
Neoplasms - blood
Neoplasms - genetics
Neoplasms - pathology
Neoplasms - therapy
Neurosciences
Nucleotides
Polymorphism, Single Nucleotide
Solid tumors
Telemedicine
Tumor Burden
Tumors
Whole Genome Sequencing
Title Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment
URI https://link.springer.com/article/10.1038/s41591-024-03040-4
https://www.ncbi.nlm.nih.gov/pubmed/38877116
https://www.proquest.com/docview/3069699671
https://www.proquest.com/docview/3068749791
https://pubmed.ncbi.nlm.nih.gov/PMC7616143
Volume 30
WOSCitedRecordID wos001247911100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M7P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: 7X7
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (ProQuest)
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2O
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 1546-170X
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0003059
  issn: 1078-8956
  databaseCode: M2P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFhAXHgVKoKyCxA2sbmLHjxMC1IpLlwhRaW-RkzjblbrJstmtxL9nxsmmWip64eKLx7KtGY8_ez57AN6X0rhKJYoJWVgmuM6Z1rJilidOSmxUjkufbEJNJno6NWl_4db2tMqtT_SOumwKuiM_QWhrJIJzFX1a_mKUNYqiq30KjT04QGQTEaXrPE4HT4y2bDrOoWYaDwL9o5kx1yctblzE-YkFo-DgmIndjekW2rxNmvwrcuo3pLMn_zuVp_C4h6Lh5852nsE9Vx_Cgy455e9DeHjeh92fQ3VxhYNpietO3jFcIuReWEY7YBkuvFegMYZNFa43i2YV5v5xREik-lm48HxNx_oEFTM228xLbEjUEewfDXheXNIl5Qu4ODv9-fUb6xM0sEIosWZxUSnjTBVxFRk7zuPSOe4kd1Zq9KHOVcZYja49J5Vb6bjFExDPrSwMT6TlL2G_bmr3CkLEHWWCcKkSNhdFJG0c68pYKYxAWZEEEG21kxX97-WUROMq81F0rrNOoxlqNPMazUQAH4Y2y-7vjjulj7fayvp13GY3qgrg3VCNK5DCKrZ2zcbLaCWMMihz1NnI0B1HH66iSAagdqxnEKDfvXdr6vml_-VbSQTjggfwcWtnN8P69yxe3z2LN_Ao9jZP10jHsL9ebdxbuF9cr-ftagR7aqp8qUdw8OV0kv4Y0Yr67suUSpX-AfHaJ3Y
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoULj0IhUMBIcAKrm9jx44AQAqpWbVc9tFJvqZM425W6ybLZBfVP8RsZO49qqeitB84Zx3byzcP25xmAd7nQtpCxpFxkhnKmUqqUKKhhsRUCG-WD3BebkMOhOjnRhyvwu7sL42iVnU30hjqvMrdHvoWhrRYYnMvw8_QHdVWj3OlqV0KjgcWevfiFS7b60-43_L_vo2j7-9HXHdpWFaAZl3xOo6yQ2uoiZDLUZpBGubXMCmaNUKj41hZaG4X2KHXjNMIyg2E7S43INIuFYfjeW3Cbu8xijioYHfaWH3VHNxxHRRUuPNpLOgOmtmp0lI5jFHHqDiMHlC87wivR7VWS5l8ntd4Bbj_83z7dI3jQhtrkS6Mbj2HFlutwtym-ebEOawctreAJFMfnOPnacfmd9SdTXFJMDHUePicTb_XcNyFVQeaLSTUjqb_8QdylgRGZeD6qpW0BjhEdLcY5NnTUGOwfFXScnblN2KdwfCPz3YDVsirtcyAYV-UxhoMFNynPQmGiSBXaCK45yvI4gLBDQ5K12dldkZDzxLMEmEoaBCWIoMQjKOEBfOjbTJvcJNdKb3boSFo7VSeX0Ajgbf8YLYw7NjKlrRZeRkmupUaZZw0m--4Y-igZhiIAuYTWXsBlL19-Uo7PfBZzKXCxwVkAHztcXw7r37N4cf0s3sC9naOD_WR_d7j3Eu5HXt_cltkmrM5nC_sK7mQ_5-N69tprLoHTm8b7H6aRgiA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHUx74TJugQFBgiew2sSOLw8IAVvFNKgqxKS9BSdxukpr0jUtaH-NX8exc5nKxN72wLOP40u-c7H92QfgVcaVyUUkCOOpJozKhEjJc6JpZDjHStkgc8kmxGgkj4_VeAN-t3dhLK2ytYnOUGdlavfI-xjaKo7BuQj6eUOLGO8N38_PiM0gZU9a23QaNUQOzfkvXL5V7w728F-_DsPh_vdPn0mTYYCkTLAlCdNcKKPygIpA6UESZsZQw6nRXKIRMCZXSku0TYnts-aGagzhaaJ5qmjENcXv3oBNgUEG68Hmx_3R-FvnB1CTVM14lETiMqS5sjOgsl-h27SMo5ARezQ5IGzdLV6KdS9TNv86t3XucHjnf57Iu3C7CcL9D7XW3IMNU-zArTot5_kObH1tCAf3IT86xYmoLMvf-gV_jouNmSbW92f-zNlDOz9-mfvL1axc-Im7FuLb6wQTf-aYqoY0qTkmZLKaZljRkmawfVTdaXpit2cfwNG1jPch9IqyMI_Bx4grizBQzJlOWBpwHYYyV5ozxVCWRR4ELTLitHm33aYPOY0df4DKuEZTjGiKHZpi5sGbrs68frXkSundFilxY8Gq-AImHrzsitH22AMlXZhy5WSkYEoolHlU47NrjqL3EkHAPRBryO0E7Lvm6yXF9MS9by44LkMY9eBti_GLbv17FE-uHsUL2EKYx18ORodPYTt0qmf30naht1yszDO4mf5cTqvF80aNffhx3YD_A-KwjDo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasensitive+plasma-based+monitoring+of+tumor+burden+using+machine-learning-guided+signal+enrichment&rft.jtitle=Nature+medicine&rft.au=Widman%2C+Adam+J.&rft.au=Shah%2C+Minita&rft.au=Frydendahl%2C+Amanda&rft.au=Halmos%2C+Daniel&rft.date=2024-06-01&rft.pub=Nature+Publishing+Group+US&rft.issn=1078-8956&rft.eissn=1546-170X&rft.volume=30&rft.issue=6&rft.spage=1655&rft.epage=1666&rft_id=info:doi/10.1038%2Fs41591-024-03040-4&rft.externalDocID=10_1038_s41591_024_03040_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-8956&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-8956&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-8956&client=summon