Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previ...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature medicine Ročník 30; číslo 6; s. 1655 - 1666
Hlavní autoři: Widman, Adam J., Shah, Minita, Frydendahl, Amanda, Halmos, Daniel, Khamnei, Cole C., Øgaard, Nadia, Rajagopalan, Srinivas, Arora, Anushri, Deshpande, Aditya, Hooper, William F., Quentin, Jean, Bass, Jake, Zhang, Mingxuan, Langanay, Theophile, Andersen, Laura, Steinsnyder, Zoe, Liao, Will, Rasmussen, Mads Heilskov, Henriksen, Tenna Vesterman, Jensen, Sarah Østrup, Nors, Jesper, Therkildsen, Christina, Sotelo, Jesus, Brand, Ryan, Schiffman, Joshua S., Shah, Ronak H., Cheng, Alexandre Pellan, Maher, Colleen, Spain, Lavinia, Krause, Kate, Frederick, Dennie T., den Brok, Wendie, Lohrisch, Caroline, Shenkier, Tamara, Simmons, Christine, Villa, Diego, Mungall, Andrew J., Moore, Richard, Zaikova, Elena, Cerda, Viviana, Kong, Esther, Lai, Daniel, Malbari, Murtaza S., Marton, Melissa, Manaa, Dina, Winterkorn, Lara, Gelmon, Karen, Callahan, Margaret K., Boland, Genevieve, Potenski, Catherine, Wolchok, Jedd D., Saxena, Ashish, Turajlic, Samra, Imielinski, Marcin, Berger, Michael F., Aparicio, Sam, Altorki, Nasser K., Postow, Michael A., Robine, Nicolas, Andersen, Claus Lindbjerg, Landau, Dan A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Nature Publishing Group US 01.06.2024
Nature Publishing Group
Témata:
ISSN:1078-8956, 1546-170X, 1546-170X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGE SNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGE CNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGE SNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition. Detection of circulating tumor DNA using MRD-EDGE, a machine-learning-guided single-nucleotide variant and copy-number variant detection platform for signal enrichment, enables monitoring of minimal residual disease and immunotherapy response in settings of low tumor burden.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors co-supervised
These authors contributed equally
ISSN:1078-8956
1546-170X
1546-170X
DOI:10.1038/s41591-024-03040-4