Weight convergence analysis of DV-hop localization algorithm with GA Weight convergence analysis of DV-hop localization algorithm with GA

The distance vector-hop (DV-hop) is a typical localization algorithm. It estimates sensor nodes location through detecting the hop count between nodes. To enhance the positional precision, the weight is used to estimate position, and the conventional wisdom is that the more hop counts are, the small...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Soft computing (Berlin, Germany) Ročník 24; číslo 23; s. 18249 - 18258
Hlavní autoři: Cai, Xingjuan, Wang, Penghong, Cui, Zhihua, Zhang, Wensheng, Chen, Jinjun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Témata:
ISSN:1432-7643, 1433-7479
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The distance vector-hop (DV-hop) is a typical localization algorithm. It estimates sensor nodes location through detecting the hop count between nodes. To enhance the positional precision, the weight is used to estimate position, and the conventional wisdom is that the more hop counts are, the smaller value of weight will be. However, there has been no clear mathematical model among positioning error, hop count, and weight. This paper constructs a mathematical model between the weights and hops and analyzes the convergence of this model. Finally, the genetic algorithm is used to solve this mathematical weighted DV-hop (MW-GADV-hop) positioning model, the simulation results illustrate that the model construction is logical, and the positioning error of the model converges to 1/4 R .
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by V. Loia.
ISSN:1432-7643
1433-7479
DOI:10.1007/s00500-020-05088-z