Weight convergence analysis of DV-hop localization algorithm with GA Weight convergence analysis of DV-hop localization algorithm with GA
The distance vector-hop (DV-hop) is a typical localization algorithm. It estimates sensor nodes location through detecting the hop count between nodes. To enhance the positional precision, the weight is used to estimate position, and the conventional wisdom is that the more hop counts are, the small...
Saved in:
| Published in: | Soft computing (Berlin, Germany) Vol. 24; no. 23; pp. 18249 - 18258 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2020
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1432-7643, 1433-7479 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The distance vector-hop (DV-hop) is a typical localization algorithm. It estimates sensor nodes location through detecting the hop count between nodes. To enhance the positional precision, the weight is used to estimate position, and the conventional wisdom is that the more hop counts are, the smaller value of weight will be. However, there has been no clear mathematical model among positioning error, hop count, and weight. This paper constructs a mathematical model between the weights and hops and analyzes the convergence of this model. Finally, the genetic algorithm is used to solve this mathematical weighted DV-hop (MW-GADV-hop) positioning model, the simulation results illustrate that the model construction is logical, and the positioning error of the model converges to 1/4
R
. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by V. Loia. |
| ISSN: | 1432-7643 1433-7479 |
| DOI: | 10.1007/s00500-020-05088-z |