Variational Stability and Marginal Functions via Generalized Differentiation

Robust Lipschitzian properties of set-valued mappings and marginal functions play a crucial role in many aspects of variational analysis and its applications, especially for issues related to variational stability and optimization. We develop an approach to variational stability based on generalized...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of operations research Jg. 30; H. 4; S. 800 - 816
Hauptverfasser: Mordukhovich, Boris S, Nam, Nguyen Mau
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Linthicum INFORMS 01.11.2005
Institute for Operations Research and the Management Sciences
Schlagworte:
ISSN:0364-765X, 1526-5471
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Robust Lipschitzian properties of set-valued mappings and marginal functions play a crucial role in many aspects of variational analysis and its applications, especially for issues related to variational stability and optimization. We develop an approach to variational stability based on generalized differentiation. The principal achievements of this paper include new results on coderivative calculus for set-valued mappings and singular subdifferentials of marginal functions in infinite dimensions with their extended applications to Lipschitzian stability. In this way we derive efficient conditions ensuring the preservation of Lipschitzian and related properties for set-valued mappings under various operations, with the exact bound/modulus estimates, as well as new sufficient conditions for the Lipschitz continuity of marginal functions.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0364-765X
1526-5471
DOI:10.1287/moor.1050.0147