Variational Stability and Marginal Functions via Generalized Differentiation
Robust Lipschitzian properties of set-valued mappings and marginal functions play a crucial role in many aspects of variational analysis and its applications, especially for issues related to variational stability and optimization. We develop an approach to variational stability based on generalized...
Uloženo v:
| Vydáno v: | Mathematics of operations research Ročník 30; číslo 4; s. 800 - 816 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Linthicum
INFORMS
01.11.2005
Institute for Operations Research and the Management Sciences |
| Témata: | |
| ISSN: | 0364-765X, 1526-5471 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Robust Lipschitzian properties of set-valued mappings and marginal functions play a crucial role in many aspects of variational analysis and its applications, especially for issues related to variational stability and optimization. We develop an approach to variational stability based on generalized differentiation. The principal achievements of this paper include new results on coderivative calculus for set-valued mappings and singular subdifferentials of marginal functions in infinite dimensions with their extended applications to Lipschitzian stability. In this way we derive efficient conditions ensuring the preservation of Lipschitzian and related properties for set-valued mappings under various operations, with the exact bound/modulus estimates, as well as new sufficient conditions for the Lipschitz continuity of marginal functions. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0364-765X 1526-5471 |
| DOI: | 10.1287/moor.1050.0147 |