Training a support vector machine in the primal

Most literature on support vector machines (SVMs) concentrates on the dual optimization problem. In this letter, we point out that the primal problem can also be solved efficiently for both linear and nonlinear SVMs and that there is no reason for ignoring this possibility. On the contrary, from the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neural computation Ročník 19; číslo 5; s. 1155
Hlavný autor: Chapelle, Olivier
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.05.2007
Predmet:
ISSN:0899-7667
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Most literature on support vector machines (SVMs) concentrates on the dual optimization problem. In this letter, we point out that the primal problem can also be solved efficiently for both linear and nonlinear SVMs and that there is no reason for ignoring this possibility. On the contrary, from the primal point of view, new families of algorithms for large-scale SVM training can be investigated.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0899-7667
DOI:10.1162/neco.2007.19.5.1155