Training a support vector machine in the primal
Most literature on support vector machines (SVMs) concentrates on the dual optimization problem. In this letter, we point out that the primal problem can also be solved efficiently for both linear and nonlinear SVMs and that there is no reason for ignoring this possibility. On the contrary, from the...
Gespeichert in:
| Veröffentlicht in: | Neural computation Jg. 19; H. 5; S. 1155 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.05.2007
|
| Schlagworte: | |
| ISSN: | 0899-7667 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Most literature on support vector machines (SVMs) concentrates on the dual optimization problem. In this letter, we point out that the primal problem can also be solved efficiently for both linear and nonlinear SVMs and that there is no reason for ignoring this possibility. On the contrary, from the primal point of view, new families of algorithms for large-scale SVM training can be investigated. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0899-7667 |
| DOI: | 10.1162/neco.2007.19.5.1155 |