On a quadratic programming problem involving distances in trees
Let T be a tree and let D be the distance matrix of the tree. The problem of finding the maximum of x ′ D x subject to x being a nonnegative vector with sum one occurs in many different contexts. These include some classical work on the transfinite diameter of a finite metric space, equilibrium poin...
Uloženo v:
| Vydáno v: | Annals of operations research Ročník 243; číslo 1-2; s. 365 - 373 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.08.2016
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0254-5330, 1572-9338 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let
T
be a tree and let
D
be the distance matrix of the tree. The problem of finding the maximum of
x
′
D
x
subject to
x
being a nonnegative vector with sum one occurs in many different contexts. These include some classical work on the transfinite diameter of a finite metric space, equilibrium points of symmetric bimatrix games and maximizing weighted average distance in graphs. We show that the problem can be converted into a strictly convex quadratic programming problem and hence it can be solved in polynomial time. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0254-5330 1572-9338 |
| DOI: | 10.1007/s10479-014-1743-y |